Scaling of Strength and Lifetime Distributions of Quasibrittle Structures

  • Zdeněk P. Bažant
  • Jia-Liang Le


Engineering structures such as aircraft, bridges, dams, nuclear containments and ships, as well as computer circuits, chips and MEMS, should be designed for failure probability < 10− 6–10− 7 per lifetime. The safety factors required to ensure it are still determined empirically, even though they represent much larger and much more uncertain corrections to deterministic calculations than do the typical errors of modern computer analysis of structures. The empirical approach is sufficient for perfectly brittle and perfectly ductile structures since the cumulative distribution function (cdf) of random strength is known, making it possible to extrapolate to the tail from the mean and variance. However, the empirical approach does not apply to structures consisting of quasibrittle materials, which are brittle materials with inhomogeneities that are not negligible compared to structure size. This paper presents a refined theory on the strength distribution of quasibrittle structures, which is based on the fracture mechanics of nanocracks propagating by activation energy controlled small jumps through a nano-structure and an analytical model for the multi-scale transition of strength statistics. Based on the power law for creep crack growth rate and the cdf of material strength, the lifetime distribution of quasibrittle structures under constant load is derived. Both the strength and lifetime cdf’s are shown to be size- and geometry- dependent. The theory predicts intricate size effects on both the mean structural strength and lifetime, the latter being much stronger. The theory is shown to match the experimentally observed systematic deviations of strength and lifetime histograms of industrial ceramics from the Weibull distribution.


Representative Volume Element Strength Distribution Weibull Modulus Lifetime Distribution Creep Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basquin, O.H.: The Exponential Law of Endurance Tests. In: Proc. Amer. Soc.Testing and Mater., ASTEA, vol. 10, pp. 625–630 (1910)Google Scholar
  2. 2.
    Bažant, Z.P.: Scaling theory of quaisbrittle structural failure. Proc. Nat’l. Acad. Sci., USA 101(37), 13397–13399 (2004)CrossRefGoogle Scholar
  3. 3.
    Bažant, Z.P.: Scaling of Structural Strength, 2nd edn. Elsevier, London (2005)zbMATHGoogle Scholar
  4. 4.
    Bažant, Z.P., Jirásek, M.: R-curve modeling of rate and size effects in quasibrittle fracture. Int. J. of Frac. 62, 355–373 (1993)Google Scholar
  5. 5.
    Bažant, Z.P., Le, J.-L.: Nano-mechanics based modeling of lifetime distribution of quasibrittle structures. J. Engrg. Failure Ana. 16, 2521–2529 (2009)CrossRefGoogle Scholar
  6. 6.
    Bažant, Z.P., Le, J.-L.: Size effect on strength and lifetime distributions of quasibrittle structures. In: Proc. (CD), ASME 2009 Int. Mech. Engrg. Congress (IMECE 2009), Lake Buena Vista, Florida, pp. 1–9 (2009)Google Scholar
  7. 7.
    Bažant, Z.P., Le, J.-L., Bazant, M.Z.: Size effect on strength and lifetime distribution of quasibrittle structures implied by interatomic bond break activation. In: Proc. of 17th European Conference on Fracture, Brno, Czech Rep., pp. 78–92 (2008)Google Scholar
  8. 8.
    Bažant, Z.P., Le, J.-L., Bazant, M.Z.: Scaling of strength and lifetime distributions of quasibrittle structures based on atomistic fracture mechanics. Proceeding of National Academy of Sciences 106(28), 1484–11489 (2009)Google Scholar
  9. 9.
    Bažant, Z.P., Novák, D.: Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. I. Theory. J. of Engrg. Mech. 126(2), 166–174 (2000)CrossRefGoogle Scholar
  10. 10.
    Bažant, Z.P., Novák, D.: Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. II. Application. J. of Engrg. Mech. ASCE 126(2), 175–185 (2000)CrossRefGoogle Scholar
  11. 11.
    Bažant, Z.P., Novák, D.: Energetic-statistical size effect in quasibrittle failure at crack initiation. ACI Mater. J. 97(3), 381–392 (2000)Google Scholar
  12. 12.
    Bažant, Z.P., Pang, S.-D.: Mechanics based statistics of failure risk of quasibrittle structures and size effect on safety factors. Proceeding of National Academy of Sciences 103(25), 9434–9439 (2006)CrossRefGoogle Scholar
  13. 13.
    Bažant, Z.P., Pang, S.-D.: Activation energy based extreme value statistics and size effect in brittle and quasibrittle fracture. J. Mech. Phys. Solids 55, 91–134 (2007)zbMATHCrossRefGoogle Scholar
  14. 14.
    Bažant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)Google Scholar
  15. 15.
    Bažant, Z.P., Prat, P.C.: Effect of temperature and humidity on fracture energy of concrete. ACI Mater. J. 85-M32, 262–271 (1988)Google Scholar
  16. 16.
    Bažant, Z.P., Vořechovský, M., Novák, D.: Asymptotic prediction of energetic-statistical size effect from deterministic finite element solutions. J. Engrg. Mech., ASCE 128, 153–162 (2007)Google Scholar
  17. 17.
    Bažant, Z.P., Xi, Y.: Statistical size effect in quasi-brittle structures: II. Nonlocal theory. J. Engrg. Mech., ASCE 117(7), 2623–2640 (1991)Google Scholar
  18. 18.
    Bažant, Z.P., Zhou, Y., Daniel, I.M., Caner, F.C., Yu, Q.: Size effect on strength of laminate-foam sandwich plates. J. of Engrg. Materials and Technology ASME 128(3), 366–374 (2006)CrossRefGoogle Scholar
  19. 19.
    Chiao, C.C., Sherry, R.J., Hetherington, N.W.: Experimental verification of an accelerated test for predicting the lifetime of oragnic fiber composites. J. Comp. Mater. 11, 79–91 (1977)CrossRefGoogle Scholar
  20. 20.
    Daniels, H.E.: The statistical theory of the strength of bundles and threads. Proc. R. Soc. London A. 183, 405–435 (1945)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Duckett, K.: Risk analysis and the acceptable probability of failure. The Structural Engineering 83(15), 25–26 (2005)Google Scholar
  22. 22.
    Duffy, S.F., Powers, L.M., Starlinger, A.: Reliability analysis of structural ceramic components using a three-parameter Weibull distribution. Tran. ASME J. Eng. Gas Turbines Power 115, 109–116 (1993)CrossRefGoogle Scholar
  23. 23.
    Evans, A.G.: A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina. J. Mater. Sci. 7, 1146–1173 (1972)Google Scholar
  24. 24.
    Evans, A.G., Fu, Y.: The mechanical behavior of alumina. In: Fracture in Ceramic Materials, pp. 56–88. Noyes Publications, Park Ridge (1984)Google Scholar
  25. 25.
    Fett, T., Munz, D.: Static and cyclic fatigue of ceramic materials. In: Vincenzini, P. (ed.) Ceramics Today – Tomorrow’s Ceramics, pp. 1827–1835. Elsevier Science Publisher B. V., Amsterdam (1991)Google Scholar
  26. 26.
    Graham-Brady, L.L., Arwadea, S.R., Corrb, D.J., Gutiérrezc, M.A., Breyssed, D., Grigoriue, M., Zabaras, N.: Probability and Materials: from Nano- to Macro-Scale: A summary. Prob. Engrg. Mech. 21(3), 193–199 (2006)CrossRefGoogle Scholar
  27. 27.
    Gross, B.: Least squares best fit method for the three parameter Weibull distribution: analysis of tensile and bend specimens with volume or surface flaw failure. NASA TM-4721, 1–21 (1996)Google Scholar
  28. 28.
    Harlow, D.G., Smith, R.L., Taylor, H.M.: Lower tail analysis of the distribution of the strength of load-sharing systems. J. Appl. Prob. 20, 358–367 (1983)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kawakubo, T.: Fatigue crack growth mechanics in ceramics. In: Kishimoto, H., Hoshide, T., Okabe, N. (eds.) Cyclic Fatigue in Ceramics, pp. 123–137. Elsevier Science B. V. and The Society of Materials Science, Japan (1995)Google Scholar
  30. 30.
    Kaxiras, E.: Atomic and Electronic Structure of Solids. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  31. 31.
    Krausz, A.S., Krausz, K.: Fracture Kinetics of Crack Growth. Kluwer Academic Publisher, Netherlands (1988)zbMATHGoogle Scholar
  32. 32.
    Le, J.-L., Bažant, Z.P.: Finite weakest link model with zero threshold for strength distribution of dental restorative ceramics. Dent. Mater. 25(5), 641–648 (2009)CrossRefGoogle Scholar
  33. 33.
    Le, J.-L., Bažant, Z.P., Bazant, M.Z.: Crack growth law and its consequences on lifetime distributions of quasibrittle structures. Journal of Physics D: Applied Physics 42, 214008, 8 (2009)CrossRefGoogle Scholar
  34. 34.
    Lohbauer, U., Petchelt, A., Greil, P.: Lifetime prediction of CAD/CAM dental ceramics. Journal of Biomedical Materials Research 63(6), 780–785 (2002)CrossRefGoogle Scholar
  35. 35.
    Mahesh, S., Phoenix, S.L.: Lifetime distributions for unidirectional fibrous composites under creep-rupture loading. Int. J. Fract. 127, 303–360 (2004)zbMATHCrossRefGoogle Scholar
  36. 36.
    Melchers, R.E.: Structural Reliability, Analysis & Prediction. Wiley, New York (1987)Google Scholar
  37. 37.
    Munz, D., Fett, T.: Ceramics: Mechanical Properties, Failure Behavior, Materials Selection. Springer, Berlin (1999)Google Scholar
  38. 38.
    NKB (Nordic Committee for Building Structures). Recommendation for loading and safety regulations for structural design. NKB Report, No. 36 (1978)Google Scholar
  39. 39.
    Pang, S.-D., Bažant, Z.P., Le, J.-L.: Statistics of Strength of ceramics: Finite weakest link model and necessity of zero threshold. Int. J. Frac., Special Issue on Physical Aspects of Scaling 154, 131–145 (2008)zbMATHGoogle Scholar
  40. 40.
    Philips, R.: Crystals, Defects and Microstructures: Modeling Across Scales. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  41. 41.
    Phoenix, S.L.: Stochastic strength and fatigue of fiber bundles. Int. J. Frac. 14(3), 327–344 (1978a)Google Scholar
  42. 42.
    Phoenix, S.L.: The asymptotic time to failure of a mechanical system of parallel members. SIAM J. Appl. Maths. 34(2), 227–246 (1978b)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Phoenix, S.L., Tierney, L.-J.: A statistical model for the time dependent failure of unidirectional composite materials under local elastic load-sharing among fibers. Engrg. Fract. Mech. 18(1), 193–215 (1983)CrossRefGoogle Scholar
  44. 44.
    Phoenix, S.L., Ibnabdeljalil, M., Hui, C.-Y.: Size effects in the distribution for strength of brittle matrix fibrous composites. Int. J. Solids Struct. 34(5), 545–568 (1997)zbMATHCrossRefGoogle Scholar
  45. 45.
    Risken, H.: The Fokker-Plank Equation, 2nd edn. Springer, Heidelberg (1989)Google Scholar
  46. 46.
    Salem, J.A., Nemeth, N.N., Powers, L.P., Choi, S.R.: Reliability Analysis of Uniaxially Ground Brittle Materials. Journal of Engineering for Gas Turbines and Power 118, 863–871 (1996)CrossRefGoogle Scholar
  47. 47.
    Santos, C.D., Strecker, K., Piorino Neto, F., de Macedo Silva, O.M., Baldacum, S.A., da Silva, C.R.M.: Evaluation of the reliability of Si3N4-Al2O3 -CTR2O3 ceramics through Weibull analysis. Materials Research 6(4), 463–467 (2003)Google Scholar
  48. 48.
    Smith, R.L.: The asymptotic distribution of the strength of a series-parallel system with equal load sharing. Ann. Probab. 10(1), 137–171 (1982)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Stanley, P., Inanc, E.Y.: Assessment of surface strength and bulk strength of a typical brittle material. In: Eggwertz, S., Lind, N.C. (eds.) Probabilistic methods. I. The mechanics of solids and structures, pp. 231–251. Springer, Heidelberg (1985)Google Scholar
  50. 50.
    Suresh, S.: Fatigue of Materials. Cambridge University Press, Cambridge (1998)Google Scholar
  51. 51.
    Thouless, M.D., Hsueh, C.H., Evans, A.G.: A damage model of creep crack growth in polycrystals. Acta. Metall. 31(10), 1675–1687 (1983)CrossRefGoogle Scholar
  52. 52.
    Tinschert, J., Zwez, D., Marx, R., Ausavice, K.J.: Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J. Dent. 28, 529–535 (2000)CrossRefGoogle Scholar
  53. 53.
    Xu, X.F.: A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput. Meth. Appl. Mech. Engrg. 196, 2723–2736 (2007)zbMATHCrossRefGoogle Scholar
  54. 54.
    Wagner, H.D.: Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. 27, 115–149 (1989)Google Scholar
  55. 55.
    Wagner, H.D., Schwartz, P., Phoenix, S.L.: Lifetime statistics for single Kevlar 49 filaments in creep-rupture. J. Polym. Sci. 21, 1868–1878 (1986)Google Scholar
  56. 56.
    Weibull, W.: The phenomenon of rupture in solids. In: Proc. Royal Swedish Inst. Eng. Res., Stockholm, vol. 153, pp. 1–55 (1939)Google Scholar
  57. 57.
    Williams, T., Baxer, S.C.: A framework for stochastic mechanics. Prob. Engrg. Mech. 21(3), 247–255 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Zdeněk P. Bažant
    • 1
  • Jia-Liang Le
    • 1
  1. 1.Northwestern University 

Personalised recommendations