Skip to main content

Experimental Mechanics in Nano-engineering

  • Chapter
Recent Advances in Mechanics

Abstract

A new renaissance in the field of Experimental Mechanics is well underway because of the recent technologies developed for Nano-Engineering. There are many challenges to face and overcome when going from the macro world to the manipulation of nano-objects. In the macro world, with the experience gained in the last century and the development of numerical techniques, Experimental Mechanics has changed its initial role of an analogical tool to solve difficult differential equations to a complementary methodology to support numerical techniques in handling complex boundary condition effects in static or dynamic problems. Experimental Mechanics is also a very important tool in materials science research. With the introduction of Nano-Engineering, Experimental Mechanics has experienced a vast expansion in its applications to understand an almost completely new field where both basic physical properties that have a well established statistical meaning in the macro world and fundamental formulations require a revision and in many cases new theoretical developments.

Since theories must be supported by experimental evidence, Experimental Mechanics represents a necessary basic tool to lay the foundations to understanding properties and behavior of materials at the nano-level. There are well established tools that allow events at the nano-level to be observed: for example, X-rays with new developments in holographic interferometry done with X-rays. Electron microscopy also has been extended to the field of holographic interferometry. Optics with its versatile photons appears also as a promising tool in many cases where X-rays or electron microscopy become difficult or impossible to apply. However, the classical resolution limitations confined for a long while optics to be used in the range of hundreds of nanometers. New recent developments have opened a new window of opportunity for optical techniques to be applied in the nano-range. This chapter will cover these recent developments. The essential theoretical aspects that make it possible to go beyond the classical resolution limits as well as their application in engineering problems such as metrology, surface topography and strain determinations will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bouchal, Z.: Non diffracting optical beams: physical properties, experiments, and applications. Czechoslovak Journal of Physics 53, 537–578 (2003)

    Article  Google Scholar 

  2. Gutiérrez-Vega, J.C., Iturbe-Castillo, M.D., Ramirez, G.A., Tepichin, E., Rodriguez-Dagnino, R.M., Chávez-Cerda, S., New, G.H.C.: Experimental demonstration of optical Mathieu beams. Optics Communications 195, 35–40 (2001)

    Article  Google Scholar 

  3. Hernandez-Aranda, R.I., Guizar-Sicairos, M., Bandres, M.A.: Propagation of generalized vector Helmholtz–Gauss beams through paraxial optical systems. Optics Express 14, 8974–8988 (2006)

    Article  Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics. VII Edition. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Toraldo di Francia, G.: Super-gain antennas and optical resolving power. Nuovo Cimento S9, 426–435 (1952)

    Google Scholar 

  6. Toraldo di Francia, G.: La Diffrazione della Luce. Edizioni Scientifiche Einaudi, Torino (1958)

    Google Scholar 

  7. Yu, F.T.S.: Entropy and Information Optics. Marcel Dekker, New York (2000)

    Google Scholar 

  8. Vigoureux, J.M.: De l’onde évanescente de Fresnel au champ proche optique. Annales de la Fondation Luis de Broglie 28, 525–547 (2003)

    Google Scholar 

  9. Jackson, J.D.: Classical Electrodynamics, 3rd edn. John Wiley & Sons, New York (2001)

    Google Scholar 

  10. Brillouin, L.: Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 191, 292–294 (1930)

    Google Scholar 

  11. Sciammarella, C.A., Lamberti, L., Sciammarella, F.M.: The equivalent of Fourier holography at the nanoscale. Experimental Mechanics 49, 747–773 (2009)

    Article  Google Scholar 

  12. General Stress Optics Inc. (2008), Holo-Moiré Strain Analyzer Version 2.0., Chicago (USA), http://www.stressoptics.com

  13. Guillemet, C.: L’intérférometrie à ondes multiples appliquée à détermination de la répartition de l’indice de réfraction dans un milieu stratifié. Ph.D. Dissertation, Faculté de Sciences, University of Paris, Imprimerie Jouve, Paris, France (1970)

    Google Scholar 

  14. Sciammarella, C.A., Lamberti, L.: Observation of fundamental variables of optical techniques in nanometric range. In: Gdoutos, E.E. (ed.) ICEM13 International Conference on Experimental Mechanics, Alexandroupolis, Greece. Springer, Dordrecht (August 2007)

    Google Scholar 

  15. Sciammarella, C.A., Lamberti, L., Sciammarella, F.M.: Light generation at the nano scale, key to interferometry at the nano scale. In: 2010 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Indianapolis, USA (June 2010)

    Google Scholar 

  16. Tanner, L.H.: The scope and limitations of three-dimensional holography of phase objects. Journal of Scientific Instrument 7, 774–776 (1974)

    Article  Google Scholar 

  17. Burch, J.W., Gates, C., Hall, R.G.N., Tanner, L.H.: Holography with a scatter-plate as a beam splitter and a pulsed ruby laser as light source. Nature 212, 1347–1348 (1966)

    Article  Google Scholar 

  18. Spencer, R.C., Anthony, S.A.: Real time holographic moiré patterns for flow visualization. Applied Optics 7, 561 (1968)

    Article  Google Scholar 

  19. Hudgins, R.R., Dugourd, P., Tenenbaum, J.N., Jarrold, M.F.: Structural transitions of sodium nanocrystals. Physical Review Letters 78, 4213–4216 (1997)

    Article  Google Scholar 

  20. Pack, A.: Current Topics in Nano-Optics. PhD Dissertation. Chemnitz Technical University, Germany (2001)

    Google Scholar 

  21. Kretschmann, E.: Die Bestimmung der Oberflächenrauhigkeit dünner schichten durch Messung der Winkelabhängigkeit der Streustrahlung von Oberflächen Plasma Schwingungen. Optics Communications 10, 353–356 (1974)

    Article  Google Scholar 

  22. Heitmann, D.: Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces. Journal of Physics C: Solid State Physics 10, 397–405 (1977)

    Article  Google Scholar 

  23. Teng, Y.Y., Stern, E.A.: Plasmon radiation from metal gratings. Physical Review Letters 19, 511–514 (1967)

    Article  Google Scholar 

  24. Sciammarella, C.A., Lamberti, L., Sciammarella, F.M., Demelio, G.P., Dicuonzo, A., Boccaccio, A.: Application of plasmons to the determination of surface profile and contact strain distribution. Strain 46, 307–323 (2010)

    Article  Google Scholar 

  25. Ebbeni, J.: Etude du phénomène de moirure par réflexion d’un réseau plan sur une surface gauchie et de son application en analyse des contraintes et des déformations. VDI Experimentelle Spannung Analyse Berichte 102, 75–81 (1966)

    Google Scholar 

  26. Sciammarella, C.A., Combel, O.: Interferometric reflection moiré. In: Pryputniewicz, R.J., et al. (eds.) Proceedings of SPIE 2545, International Society for Optical Engineering, Bellingham, WA, USA, pp. 72–85 (1995)

    Google Scholar 

  27. Guild, J.: The interference systems of crossed diffraction gratings. Clarendon Press, Oxford (1956)

    MATH  Google Scholar 

  28. Stout, K.F., Blunt, L.: Three-dimensional surface topography, 2nd edn. Penton Press, London (2000)

    Google Scholar 

  29. International Organization for Standardization, Surface texture: Profile method – Terms, definitions and surface texture parameters. ISO Specification 4287 (1997)

    Google Scholar 

  30. Sciammarella, C.A.: Overview of optical techniques that measure displacements: Murray Lecture. Experimental Mechanics 43, 1–19 (2003)

    Article  Google Scholar 

  31. Sciammarella, C.A., Lamberti, L., Sciammarella, F.M.: High accuracy contouring with projection moiré. Optical Engineering 44 ( Paper No. 093606), 1–12 (2005)

    Google Scholar 

  32. Sciammarella, C.A., Gilbert, J.A.: A holographic moiré to obtain separate patterns for components of displacement. Experimental Mechanics 16, 215–220 (1976)

    Article  Google Scholar 

  33. Gilbert, J.A., Sciammarella, C.A., Chawla, S.K.: Extension to 3-D of a holographic-moiré technique to separate patterns corresponding to components of displacement. Experimental Mechanics 18, 321–327 (1978)

    Article  Google Scholar 

  34. Sciammarella, C.A., Chawla, S.K.: A lens holographic-moiré technique to obtain components of displacements and derivatives. Experimental Mechanics 18, 373–381 (1978)

    Article  Google Scholar 

  35. Sciammarella, C.A., Rastogi, P.K., Jacquot, P.: Holographic moiré in real time. Experimental Mechanics 22, 52–63 (1982)

    Article  Google Scholar 

  36. Sciammarella, C.A.: Holographic moiré. In: Lagarde, A. (ed.) Proceedings of the 1979 IUTAM Symposium on Optical Methods in Mechanics of Solids, pp. 147–176. Sijhoff and Noordhoff, The Netherlands (1981)

    Google Scholar 

  37. Sciammarella, C.A.: Holographic-Moiré, an optical tool for the determination of displacements, strains, contours and slopes of surfaces. Optical Engineering 21, 447–457 (1982)

    Google Scholar 

  38. Sciammarella, C.A., Bhat, G., Longinow, N., Zhao, M.: A high accuracy micromechanics displacement measurement optical technique. In: Sharpe, W.N. (ed.) Micromechanics: Experimental Techniques. AMD 102, The American Society of Mechanical Engineers, New York, USA, pp. 121–132 (1989)

    Google Scholar 

  39. Sciammarella, C.A., Sciammarella, F.M.: Measuring mechanical properties of materials in the micron range. Optical Engineering 42, 1215–1222 (2003)

    Article  Google Scholar 

  40. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Sciammarella, C.A., Sciammarella, F.M., Lamberti, L. (2011). Experimental Mechanics in Nano-engineering. In: Kounadis, A.N., Gdoutos, E.E. (eds) Recent Advances in Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0557-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0557-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0556-2

  • Online ISBN: 978-94-007-0557-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics