Skip to main content

Recent Advances in Microelectromechanical Systems and Their Applications for Future Challenges

  • Chapter
Recent Advances in Mechanics
  • 855 Accesses

Abstract

Recent advances in optoelectronic methodology for microscale measurements are described and their use is illustrated with representative examples of microelectromechanical systems (MEMS) operating at high frequencies and used in demanding environments. Today, the word MEMS is employed to describe a process used as well as the resulting products. Therefore, a MEMS-process is also known as a “microsystem technology” (MST).

Advances in emerging technologies (ETs) of MEMS and nanotechnology, especially relating to the applications, constitute one of the most challenging tasks in today’s micromechanics and nanomechanics. In addition to design, analysis, and fabrication capabilities, these tasks also require advanced test methodologies for determination of functional characteristics of devices produced to enable verification of their operation as well as refinement and optimization of specific designs. In particular, development of miniscule devices requires sophisticated design, analysis, fabrication, testing, and characterization tools. These tools can be categorized as analytical, computational, and experimental. Solutions using the tools from any one category alone do not usually provide necessary information on MEMS and extensive merging, or hybridization, of the tools from different categories is used. One of the approaches employed in this development of structures of contemporary interest, is based on a combined use of the analytical, computational, and experimental solutions (ACES) methodology. Development of this methodology was made possible by recent advances in optoelectronic methodology, which was coupled with the state-of-the-art computational methods, to offer a considerable promise for effective development of various designs. This approach facilitates characterization of dynamic and thermomechanical behavior of the individual components, their packages, and other complex material structures. In this paper, recent advances in optoelectronic methodology for micro- and nano-scale measurements are described and their use is illustrated with representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pryputniewicz, R.J.: Integrated approach to teaching of design, analysis, and characterization in micromechatronics. In: Paper No. IMECE2000/DE-13, ASME - Am. Soc. Mech. Eng., New York, NY (2000)

    Google Scholar 

  2. Pryputniewicz, R.J.: MEMS design education by case studies, Paper No. IMECE2001/DE-23292, ASME - Am. Soc. Mech. Eng., New York, NY (2001)

    Google Scholar 

  3. Pryputniewicz, R.J.: Progress in MEMS. Strain 43, 1–13 (2007)

    Article  Google Scholar 

  4. Pryputniewicz, D.R.: ACES approach to the development of microcomponents, MS Thesis, Worcester Polytechnic Institute, Worcester, MA (1997)

    Google Scholar 

  5. Pryputniewicz, R.J.: A hybrid approach to deformation analysis. In: Proc. SPIE, vol. 2342, pp. 282–296 (1994)

    Google Scholar 

  6. Furlong, C., Pryputniewicz, R.J.: Hybrid computational and experimental approach for the study and optimization of mechanical components. Opt. Eng. 37, 1448–1455 (1998)

    Article  Google Scholar 

  7. Furlong, C.: Hybrid, experimental and computational, approach for the efficient study and optimization of mechanical and electro-mechanical components, Ph.D. Dissertation, Worcester Polytechnic Institute, Worcester, MA (1999)

    Google Scholar 

  8. Pryputniewicz, E.J.: ACES approach to the study of electrostatically driven MEMS microengines, MS Thesis, Worcester Polytechnic Institute, Worcester, MA (2000)

    Google Scholar 

  9. Pryputniewicz, R.J., Galambos, P., Brown, G.C., Furlong, C., Pryputniewicz, E.J.: ACES characterization of surface micromachined microfluidic devices. Internat. J. of Microelectronics and Electronic Packaging (IJMEP) 24, 30–36 (2001)

    Google Scholar 

  10. Pryputniewicz, D. R., Furlong, and Pryputniewicz, R. J. (2001) “ACES approach to the study of material properties of MEMS,” Proc. Internat. Symp. on MEMS: Mechanics and Measurements, Portland, OR, pp. 80-83.

    Google Scholar 

  11. Pryputniewicz, R.J.: Engineering experimentation, Worcester Polytechnic Institute, Worcester, MA (1993)

    Google Scholar 

  12. Pryputniewicz, R.J., Furlong, C., Pryputniewicz, E.J.: Optimization of contact dynamics for an RF MEMS switch. In: Paper No. IMECE2002-39504, Am. Soc. Mech. Eng., New York, NY (2002)

    Google Scholar 

  13. Pryputniewicz, R.J., Furlong, C.: Novel optoelectronic methodology for testing of MOEMS. In: Proc. Internat. Symp. on MOEMS and Miniaturized Systems III. SPIE, vol. 4983, pp. 11–25 (2003)

    Google Scholar 

  14. Rogers, M.S., Miller, S.L., Sniegowski, J.J., LaVigne, G.F.: Designing and operating electrostatically driven microengines. In: Proc. 44th Internat. Instrumentation Symp., Reno, NV, pp. 56–65 (1998)

    Google Scholar 

  15. Pryputniewicz, R.J., Tan, X.G., Przekwas, A.J.: Modeling and measurements of MEMS gyroscopes. In: Proc. IEEE-PLANS 2004, Monterey, CA, pp. 111–119 (2004)

    Google Scholar 

  16. Rowe, J.R.: Advanced sensor technology key to new multivariable transmitter. In: Proc. Instr. Soc. Am.

    Google Scholar 

  17. Pryputniewicz, R.J., Angelosanto, J.P., Furlong, C., Brown, G.C., Pryputniewicz, E.J.: Analysis and measurements of high pressure response of MEMS sensors. In: Proc. Internat. Symp. on MEMS: Mechanics and Measurements, Portland, OR, pp. 76–79 (2001)

    Google Scholar 

  18. Pryputniewicz, R.J.: Thermal management in RF MEMS Ohmic switches. In: Paper No. IPACK 2007-33502, ASME – Am. Soc. Mech. Eng., New York, NY (2007)

    Google Scholar 

  19. Pryputniewicz, R.J., Wilkerson, P.W., Przekwas, A.J., Furlong, C.: RF MEMS: modeling and simulation of switch dynamics. In: Proc. 35th Internat. Symp. on Microelectronics, Denver, CO, pp. 267–272 (2002)

    Google Scholar 

  20. Furlong, C., Pryputniewicz, R.J.: Integrated approach to development of microelectronic contacts. In: Paper No. IPACK 2007-33345, ASME – Am. Soc. Mech. Eng., New York, NY (2007)

    Google Scholar 

  21. Pryputniewicz, R.J., Pryputniewicz, D.R., Pryputniewicz, E.J.: Effect of process parameters on TED-based Q-factor of MEMS. In: Paper No. IPACK 2007-33094, ASME – Am. Soc. Mech. Eng., New York, NY (2007)

    Google Scholar 

  22. Klempner, A.R., Marinis, R.T., Hefti, P., Pryputniewicz, R.J.: Experimental determination of the Q-factors of microcantilevers coated with thin metal films. Strain 45, 295–300 (2009)

    Article  Google Scholar 

  23. Pryputniewicz, R.J., Furlong, C.: MEMS and nanotechnology, Worcester Polytechnic Institute, Worcester, MA (2002)

    Google Scholar 

  24. Pryputniewicz, R.J.: Recent advances in optoelectronic methodologies: from milli- through micro- to even ...smaller applications. In: Proc. Workshop on Optical Methodology, Worpswede, Germany (2007)

    Google Scholar 

  25. Stout, P.: CFD-ACE+ a CAD system for simulation and modeling of MEMS. In: Proc. SPIE, Paris, France (1999)

    Google Scholar 

  26. Wilkerson, P.W., Kranz, M., Przekwas, A.J.: Flip-chip hermetic packaging of RF MEMS. In: MEMS4 Conference, Berkeley, CA, August 24-26 (2001)

    Google Scholar 

  27. Przekwas, A.J., Turowski, M., Furmanczyk, M., Hieke, A., Pryputniewicz, R.J.: Multiphysics design and simulation environment for microelectromechanical systems. In: Proc. Symp. on MEMS: Mechanics and Measurements, Portland, OR, pp. 84–89 (2001)

    Google Scholar 

  28. CFDRC, “CFD-ACE+ Multiphysics software” (2004), http://www.cfdrc.com

  29. SRAC, “COSMOS/M user’s guide”, Structural Research and Analysis Corporation, Santa Monica, CA (1998)

    Google Scholar 

  30. Brown, G.C.: Laser interferometric methodologies for characterizing static and dynamic behavior of MEMS, Ph.D. Dissertation, Worcester Polytechnic Institute, Worcester, MA (1999)

    Google Scholar 

  31. Pryputniewicz, R.J.: Quantitative determination of displacements and strains from holograms. In: Holographic interferometry. Springer Series in Sciences, ch. 3, vol. 68, pp. 33–72. Springer, Berlin (1995)

    Google Scholar 

  32. Pryputniewicz, R.J.: High precision hologrammetry. Internat. Arch. Photogramm. 24, 377–386 (1981)

    Google Scholar 

  33. Pryputniewicz, E.J., Miller, S.L., de Boer, M.P., Brown, G.C., Biederman, R.R., Pryputniewicz, R.J.: Experimental and analytical characterization of dynamic effects in electrostatic microengines. In: Proc. Internat. Symp. on Microscale Systems, Orlando, FL, pp. 80–83 (2000)

    Google Scholar 

  34. Pryputniewicz, R.J.: Hologram interferometry from silver halide to silicon and ...beyond. In: Proc. SPIE, vol. 2545, pp. 405–427 (1995)

    Google Scholar 

  35. Pryputniewicz, R.J., Shepherd, E., Allen, J.J., Furlong, C.: University – National Laboratory alliance for MEMS education. In: Proc. 4th Internat. Symp. on MEMS and Nanotechnology (4th-ISMAN), Charlotte, NC, pp. 364–371 (2003)

    Google Scholar 

  36. Brown, G.C., Pryputniewicz, R.J.: Holographic microscope for measuring displacements of vibrating microbeams using time-average electro-optic holography. Opt. Eng. 37, 1398–1405 (1998)

    Article  Google Scholar 

  37. Klempner, A.R., Hefti, P., Marinis, R.T., Pryputniewicz, R.J.: Development of a high stability optoelectronic laser interferometric microscope for characterization and optimization of MEMS. In: Proc. 15th Internat. Invitational UACEM Symp., Springfield, MA, pp. 275–285 (2004)

    Google Scholar 

  38. Pryputniewicz, R.J., Marinis, R.T., Klempner, A.R., Hefti, P.: Hybrid methodology for development of MEMS. In: Proc. IEEE-PLANS 2004, San Diego, CA, vol. 6 (2006)

    Google Scholar 

  39. Marinis, T.F., Soucy, J.W., Hanson, D.S., Pryputniewicz, R.J., Marinis, R.T., Klempner, A.R.: Isolation of MEMS devices from package stresses by use of compliant metal interposers. In: Proc. 56th IEEE Electronic Components & Technology Conf (56th-IEEE-ECTC), paper No. P1S25-MEMS, San Diego, CA (2006)

    Google Scholar 

  40. Pryputniewicz, R.J., Champagne, R.P., Angelosanto, J.P., Brown, G.C., Furlong, C., Pryputniewicz, E.J.: Multivariable MEMS polysilicon piezoresistive sensor: analysis and measurements. In: Proc. Internat. Symp. on Microscale Systems, Orlando, FL, pp. 72–75 (2000)

    Google Scholar 

  41. Pryputniewicz, R.J.: Thermomechanics of high-pressure MEMS sensors. In: Paper No. IPACK 2007-33507, ASME – Am. Soc. Mech. Eng., New York, NY (2007)

    Google Scholar 

  42. Mihailovich, R.E., Kim, M., Hacker, J.B.H., Sovero, A., Studer, J., Higgins, J.A., DeNatale, J.F.: MEM relay for reconfigurable RF circuits. IEEE Microwave Wireless Components Lett. 11, 53–55 (2001)

    Article  Google Scholar 

  43. Pryputniewicz, R.J., Pryputniewicz, E.J.: Quantitative characterization of microsystem dynamics. In: Paper No. IPACK 2007-33503, ASME – Am. Soc. Mech. Eng., New York, NY (2007)

    Google Scholar 

  44. Pryputniewicz, R.J.: Advances in optoelectronic metrology: from milliscale to nanoscale applications. In: Proc. 7th Internat. Symp. on MEMS and Nanotechnology (7-ISAMAN), St. Louis, MO, pp. 1–17 (2006)

    Google Scholar 

  45. Zunino III, J.L., Skelton, D.R., Han, W., Pryputniewicz, R.J.: Hybrid approach to MEMS reliability assessment. In: Paper No. SPIE6563-03, Proc. Internat. Symp., on MOEMS-MEMS 2007: Reliability, Packaging, and Characterization of MEMS, San Jose, CA (2007)

    Google Scholar 

  46. Skelton, D.R., Zunino III, J.L., Han, W., Pryputniewicz, R.J.: MEMS reliability assessment: preliminary results. In: Paper No. 318, Proc.8th Internat. Symp., on MEMS and Nanotechnology (8-ISMAN), Springfield, MA (2007)

    Google Scholar 

  47. Marinis, T.F.: The future of microelectromechanical systems (MEMS). Strain 45, 208–220 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Pryputniewicz, R.J. (2011). Recent Advances in Microelectromechanical Systems and Their Applications for Future Challenges. In: Kounadis, A.N., Gdoutos, E.E. (eds) Recent Advances in Mechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0557-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0557-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0556-2

  • Online ISBN: 978-94-007-0557-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics