Advertisement

A Computational Concept Generation Technique for Biologically-Inspired, Engineering Design

  • J. K. S. Nagel
  • R. B. Stone

Abstract

The natural world provides numerous cases for analogy and inspiration in engineering design. During the early stages of design, particularly during concept generation when several variants are created, nature can be used to inspire innovative solutions to a design problem. However, identifying and presenting the valuable knowledge from the biological domain to an engineering designer during concept generation is currently a somewhat disorganized process or requires extensive knowledge of a particular method. The proposed research aims to define and formalize the information identification and knowledge transfer processes, which will enable systematic development of biologically-inspired, engineering designs. The computational framework for discovering biological inspiration during function-based design activities is presented and discussed through an illustrative example.

Keywords

Hair Cell Engineering Design Concept Generation Functional Model Functional Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Cohen, Y.: Biomimetics Biologically Inspired Technologies. CRC/Taylor & Francis, Boca Raton, FL (2006)Google Scholar
  2. 2.
    Brebbia, C.A., Sucharov, L.J., Pascolo, P.: Design and nature: Comparing design in nature with science and engineering. WIT, Southampton (2002)Google Scholar
  3. 3.
    Brebbia, C.A., Collins, M.W.: Design and nature II: Comparing design in nature with science and engineering. WIT, Southampton (2004)Google Scholar
  4. 4.
    Brebbia, C.A.: Design and nature III: Comparing design in nature with science and engineering. WIT, Southampton (2006)Google Scholar
  5. 5.
    Dym, C.L., Little, P.: Engineering design: A project-based introduction. John Wiley, New York (2004)Google Scholar
  6. 6.
    Otto, K.N., Wood, K.L.: Product Design: Techniques in Reverse Engineering and New Product Development. Prentice-Hall, Upper Saddle River (2001)Google Scholar
  7. 7.
    Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach, 2nd edn. Springer, London (1984)Google Scholar
  8. 8.
    Ullman, D.G.: The Mechanical Design Process, 4th edn. McGraw-Hill, Inc., New York (2009)Google Scholar
  9. 9.
    Ulrich, K.T., Eppinger, S.D.: Product design and development. McGraw-Hill/Irwin, Boston (2004)Google Scholar
  10. 10.
    Voland, G.: Engineering By Design, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2004)Google Scholar
  11. 11.
    Cross, N.: Engineering design methods: Strategies for product design. John Wiley & Sons, Chichester (2008)Google Scholar
  12. 12.
    Hyman, B.: Engineering design. Prentice-Hall, New Jersey (1998)Google Scholar
  13. 13.
    Gordon, W.J.J.: Synectics, the development of creative capacity. Harper, New York (1961)Google Scholar
  14. 14.
    Bohm, M., Vucovich, J., Stone, R.: Using a Design Repository to Drive Concept Generation. Journal of Computer and Information Science in Engineering 8(1), 14502-1-8 (2008)CrossRefGoogle Scholar
  15. 15.
    Bryant Arnold, C.R., Stone, R.B., McAdams, D.A.: MEMIC: An Interactive Morphological Matrix Tool for Automated Concept Generation. Industrial Engineering Research Conference (2008)Google Scholar
  16. 16.
    Bryant, C., Bohm, M., McAdams, D., et al.: An Interactive Morphological Matrix Computational Design Tool: A Hybrid of Two Methods. In: ASME 2007 IDETC/CIE, Las Vegas, NV (2007)Google Scholar
  17. 17.
    Kurtoglu, T., Swantner, A., Campbell, M.I.: Automating the Conceptual Design Process: From Black-box to Component Selection. In: DCC 2008, Atlanta, Georgia, USA. Springer Science + Business Media B.V, Heidelberg (2008)Google Scholar
  18. 18.
    Hong-Zhong, H., Bo, R., Chen, W.: An integrated computational intelligence approach to product concept generation and evaluation. Mechanism and Machine Theory 41(5), 567–583 (2006)CrossRefGoogle Scholar
  19. 19.
    Zu, Y., Xiao, R., Zhang, X.: Automated conceptual design of mechanisms using enumeration and functional reasoning. International Journal of Materials and Product Technology 34(3), 273–294 (2009)CrossRefGoogle Scholar
  20. 20.
    Jin, Y., Li, W.: Design Concept Generation: A Hierarchical Coevolutionary Approach. Journal of Mech. Design 129(10), 1012–1022 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Design Engineering Lab (2009), http://www.designengineeringlab.com (Last accessed 2009)
  22. 22.
    Nagel, J.K.S., Stone, R.B., McAdams, D.A.: An Engineering-to-Biology Thesaurus for Engineering Design. In: 2010 ASME IDETC/CIE, Montreal, Quebec, Canada (2010)Google Scholar
  23. 23.
    Hirtz, J., Stone, R., McAdams, D., et al.: A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts. Research in Engineering Design 13(2), 65–82 (2002)Google Scholar
  24. 24.
    Helms, M., Vattam, S.S., Goel, A.K.: Biologically Inspired Design: Products and Processes. Design Studies 30(5), 606–622 (2009)CrossRefGoogle Scholar
  25. 25.
    Vincent, J.F.V., Bogatyreva, O.A., Bogatyrev, N.R., et al.: Biomimetics: its practice and theory. Journal of the Royal Society Interface 3, 471–482 (2006)CrossRefGoogle Scholar
  26. 26.
    Nagel, R., Tinsley, A., Midha, P., et al.: Exploring the use of functional models in biomimetic design. Journal of Mech. Design 130(12), 11–23 (2008)Google Scholar
  27. 27.
    Wen, H.-I., Zhang, S.-J., Hapeshi, K., et al.: An Innovative Methodology of Product Design from Nature. Journal of Bionic Engineering 5(1), 75–84 (2008)CrossRefGoogle Scholar
  28. 28.
    Linsey, J., Wood, K., Markman, A.: Modality and Representation in Analogy. AIEDAM 22(2), 85–100 (2008)CrossRefGoogle Scholar
  29. 29.
    Mak, T.W., Shu, L.H.: Using descriptions of biological phenomena for idea generation. Research in Engineering Design 19(1), 21–28 (2008)CrossRefGoogle Scholar
  30. 30.
    Bar-Cohen, Y.: Biomimetics - Using nature to inspire human innovation. Journal of Bioinspiration and Biomimetics 1, 1–12 (2006)CrossRefGoogle Scholar
  31. 31.
    Lindemann, U., Gramann, J.: Engineering Design Using Biological Principles. In: International Design Conference - DESIGN 2004, Dubrovnik (2004)Google Scholar
  32. 32.
    Chakrabarti, A., Sarkar, P., Leelavathamma, B., et al.: A functional representation for aiding biomimetic and artificial inspiration of new ideas. AIEDAM 19, 113–132 (2005)CrossRefGoogle Scholar
  33. 33.
    Srinivasan, V., Chakrabarti, A.: SAPPhIRE – An Approach to Analysis and Synthesis. In: International Conference on Engineering Design - ICED 2009, Stanford, USA (2009)Google Scholar
  34. 34.
    Wilson, J., Chang, P., Yim, S., et al.: Developing a Bio-inspired Design Repository Using Ontologies. In: 2009 ASME IDETC/CIE, California, USA (2009)Google Scholar
  35. 35.
    Chiu, I., Shu, L.H.: Using language as related stimuli for concept generation. AIEDAM 21(2), 103–121 (2007)CrossRefGoogle Scholar
  36. 36.
    Chiu, I., Shu, L.H.: Biomimetic design through natural language analysis to facilitate cross-domain information retrieval. AIEDAM 21(1), 45–59 (2007)CrossRefGoogle Scholar
  37. 37.
    Shu, L.H., Hansen, H.N., Gegeckaite, A., et al.: Case Study in Biomimetic Design: Handling and Assembly of Microparts. In: ASME 2006 IDETC/CIE, Philadelphia, PA (2006)Google Scholar
  38. 38.
    Wood, W.H., Yang, M.C., Cutkosky, M.R., et al.: Design Information Retrieval: Improving access to the informal side of design. In: ASME 1998 IDETC/CIE, Atlanta, GA (1998)Google Scholar
  39. 39.
    Bouchard, C., Omhover, J.-F., Mougenot, C., et al.: TRENDS: A Content-Based Information Retrieval System for Designers. In: DCC 2008, Atlanta, Georgia, USA. Springer Science + Business Media BV, Heidelberg (2008)Google Scholar
  40. 40.
    Cheong, H., Shu, L.H., Stone, R.B., et al.: Translating terms of the functional basis into biologically meaningful words. In: 2008 ASME IDETC/CIE, New York City, NY (2008)Google Scholar
  41. 41.
    Stone, R., Wood, K.: Development of a Functional Basis for Design. Journal of Mechanical Design 122(4), 359–370 (2000)CrossRefGoogle Scholar
  42. 42.
    Bryant, C., Stone, R., McAdams, D., et al.: Concept Generation from the Functional Basis of Design. In: International Conference on Engineering Design, Melbourne, Australia (2005)Google Scholar
  43. 43.
    Lopez-Huertas, M.J.: Thesarus Structure Design: A Conceptual Approach for Improved Interaction. Journal of Documentation 53(2), 139–177 (1997)CrossRefGoogle Scholar
  44. 44.
    Kurfman, M., Stone, R., Rajan, J., et al.: Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method. Journal of Mechanical Design 125(4), 682–693 (2003)CrossRefGoogle Scholar
  45. 45.
    Nagel, R.L., Stone, R., McAdams, D.: A Theory for the Development of Conceptual Functional Models for Automation of Manual Processes. In: 2007 ASME IDETC/CIE, Las Vegas, NV, USA (2007)Google Scholar
  46. 46.
    Stroble, J.K., Stone, R.B., McAdams, D.A., et al.: Automated Retrieval of Non-Engineering Domain Solutions to Engineering Problems. In: CIRP Design Conference 2009, Cranfield, Bedfordshire, UK (2009)Google Scholar
  47. 47.
    Prince, G.M.: The Practice of Creativity. Collier Books, New York (1970)Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • J. K. S. Nagel
    • 1
  • R. B. Stone
    • 1
  1. 1.Oregon State UniversityUSA

Personalised recommendations