Imaging the Designing Brain: A Neurocognitive Exploration of Design Thinking

  • Katerina Alexiou
  • Theodore Zamenopoulos
  • Sam Gilbert


The paper presents a functional magnetic imaging study (fMRI) aimed at exploring the neurological basis of design thinking. The study carried out brain scans of volunteers while performing design and problem solving tasks. The findings suggest that (ill-structured) design thinking differs from well-structured problem solving in terms of overall levels of brain activity, but also in terms of patterns of functional interactions between brain regions. The paper introduces the methodology and the developed experimental framework, presents the findings, and discusses the potential role and contribution of brain imaging in design research.


Functional Connectivity Anterior Cingulate Cortex Design Task Study Phase Dorsolateral Prefrontal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eastman, C.M.: Cognitive processes and ill-defined problems: a case study from design. In: Proc. of the First Joint International Conference on Artificial Intelligence, Washington, DC (1969)Google Scholar
  2. 2.
    Rittel, H.W.J., Webber, M.M.: Planning problems are wicked problems. In: Cross, N. (ed.) Developments in Design Methodology, pp. 135–144. John Wiley & Sons, New York (1984)Google Scholar
  3. 3.
    Buchanan, R.: Wicked problems in design thinking. Design Studies 8, 5–22 (1992)Google Scholar
  4. 4.
    Lawson, B.: How Designers Think: The Design Process Demystified. Architectural Press, Oxford (1997)Google Scholar
  5. 5.
    Goel, V., Grafman, J.: Role of the right prefrontal cortex in ill-structured planning. Cognitive Neuropsychology 17, 415–436 (2000)CrossRefGoogle Scholar
  6. 6.
    Vartanian, O., Goel, V.: Neural correlates of creative cognition. In: Martindale, C., Locher, P., Petrov, V.M. (eds.) Evolutionary and Neurocognitive Approaches to the Arts, pp. 195–207. Baywood Publishing, Amityville (2005)Google Scholar
  7. 7.
    Gazzaniga, M.S.: Organization of the human brain. Science 245(4921), 947–952 (1989)CrossRefGoogle Scholar
  8. 8.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87(24), 9868–9872 (1990)CrossRefGoogle Scholar
  9. 9.
    Cabeza, R., Nyberg, L.: Imaging Cognition II: an empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12(1), 1–47 (2000)CrossRefGoogle Scholar
  10. 10.
    Alexiou, K., Zamenopoulos, T., Johnson, J., Gilbert, S.: Exploring the neurological basis of design cognition using brain imaging: some preliminary results. Design Studies 30(6), 623–647 (2009)CrossRefGoogle Scholar
  11. 11.
    Gilbert, S., Zamenopoulos, T., Alexiou, K., Johnson, J.: Involvement of right dorsolateral prefrontal cortex in ill-structured design cognition: An fMRI study. Brain Research 1312, 79–88 (2010)CrossRefGoogle Scholar
  12. 12.
    Simon, H.A.: The structure of ill-structured problems. Artificial Intelligence 4(4), 181–201 (1973)CrossRefGoogle Scholar
  13. 13.
    Dorst, K., Cross, N.: Creativity in the design process: Co-evolution of problem-solution. Design Studies 22, 425–437 (2001)CrossRefGoogle Scholar
  14. 14.
    Ernst, G.W., Newell, A.: GPS: A Case Study in Generality and Problem Solving. Academic Press, Inc., New York (1969)Google Scholar
  15. 15.
    Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Englewood Cliffs (1972)Google Scholar
  16. 16.
    Goel, V., Pirolli, P.: The structure of design problem spaces. Cognitive Science 16(3), 395–429 (1992)CrossRefGoogle Scholar
  17. 17.
    Dorst, K., Dijkhuis, J.: Comparing paradigms for describing design activity. Design Studies 16(2), 261–274 (1995)CrossRefGoogle Scholar
  18. 18.
    Schraw, G., Dunkle, M.E., Bendixen, L.D.: Cognitive processes in well-defined and ill-defined problem solving. Applied Cognitive Psychology 9(6), 523–538 (1995)CrossRefGoogle Scholar
  19. 19.
    Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E., Penny, W.D.: Statistical Parametric Mapping: the Analysis of Functional Brain Images. Academic Press, London (2007)Google Scholar
  20. 20.
    Miller, E.K., Cohen, J.D.: An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202 (2001)CrossRefGoogle Scholar
  21. 21.
    Bush, G., Luu, P., Posner, M.I.: Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4(6), 215–222 (2000)CrossRefGoogle Scholar
  22. 22.
    Milham, M.P., Banich, M.T., Webb, A., Barad, V., Cohen, N.J., Wszalek, T., Kramer, A.F.: The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Cognitive Brain Research 12(3), 467–473 (2001)CrossRefGoogle Scholar
  23. 23.
    Botvinick, M.M., Cohen, J.D., Carter, C.S.: Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences 8(12), 539–546 (2004)CrossRefGoogle Scholar
  24. 24.
    Carter, C.S., Van Veen, V.: Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective and Behavioral Neuroscience 7(4), 367–379 (2007)CrossRefGoogle Scholar
  25. 25.
    Friston, K.J., Holmes, A., Poline, J.B., Price, C.J., Frith, C.D.: Detecting activations in PET and fMRI: Levels of inference and power. Neuroimage 4, 223–235 (1996)CrossRefGoogle Scholar
  26. 26.
    Fletcher, P.C., Frith, C.D., Baker, S.C., Shallice, T., Frackowiak, R.S., Dolan, R.J.: The mind’s eye–precuneus activation in memory-related imagery. Neuroimage 2, 195–200 (1995)CrossRefGoogle Scholar
  27. 27.
    Burgess, P.W., Alderman, N., Volle, E., Benoit, R.G., Gilbert, S.J.: Mesulam’s frontal lobe mystery re-examined. Restorative Neurology and Neuroscience (in press)Google Scholar
  28. 28.
    Burgess, P.W., Dumontheil, I., Gilbert, S.J.: The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences 11, 290–298 (2007)CrossRefGoogle Scholar
  29. 29.
    Christoff, K., Ream, J.M., Geddes, L.P., Gabrieli, J.D.: Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behav. Neurosci. 117, 1161–1168 (2003)CrossRefGoogle Scholar
  30. 30.
    Gilbert, S.J., Frith, C.D., Burgess, P.W.: Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. European J. of Neuroscience 21, 1423–1431 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Katerina Alexiou
    • 1
  • Theodore Zamenopoulos
    • 1
  • Sam Gilbert
    • 2
  1. 1.The Open UniversityUK
  2. 2.University College LondonUK

Personalised recommendations