Advertisement

Facetwise Study of Modelling Activities in the Algorithm for Inventive Problem Solving ARIZ and Evolutionary Algorithms

  • Céline Conrardy
  • Roland de Guio
  • Bruno Zuber

Abstract

The aim of this paper is to contribute to a better understanding of modelling activities required to solve inventive problems. The scope encompasses both computer and cognitive computation. A better understanding of the nature of knowledge and models will provide information to help conducting inventive design process with high effectiveness (convergence) and efficiency. The contribution proposed in the following paper consists in developing a framework to compare some facets of modelling activities required by evolutionary algorithms and algorithm for inventive problem solving ARIZ. It aims to yield to practical guidance, insight and intuition of new approaches for computer aided innovation that reduce cost of modelling activities and increase inventiveness of solutions.

Keywords

Evolutionary Algorithm Genetic Program Design Space Modelling Activity Pareto Frontier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H.: Engineering Design: A Systematic Approach. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Kara, L.B., Shimada, K., Marmalefsky, S.D.: An evaluation of user experience with a sketch-based 3D modeling system. Computers & Graphics 31(4), 580–597 (2007)CrossRefGoogle Scholar
  3. 3.
    Foucaulta, G., Cuillièrea, J.-C., Françoisa, V., Léonb, J.-C., Maranzanac, R.: Adaptation of CAD model topology for finite element analysis. Computer-Aided Design 40(2), 176–196 (2008)CrossRefGoogle Scholar
  4. 4.
    Thakura, A., Banerjeea, A.G., Gupta, S.K.: A survey of CAD model simplification techniques for physics-based simulation applications. Computer-Aided Design 41(2), 65–80 (2009)CrossRefGoogle Scholar
  5. 5.
    de Bono, E.: Six Thinking Hats: An Essential Approach to Business Management (1985)Google Scholar
  6. 6.
    Yamamoto, Y., Nakakoji, K., Takadad, S.: Hands-on representations in a two-dimensional space for early stages of design. Knowledge-Based Systems 13(6), 375–384 (2000)CrossRefGoogle Scholar
  7. 7.
    Rovira, N.L., Cueva, J.M., Silva, D., Gutierrez, J.: Automatic shape and topology variations in 3D CAD environments for genetic optimization. Interscience Publishers 30, 59–68 (2007)Google Scholar
  8. 8.
    Parmee, I.C.: Evolutionary and Adaptive Computing in Engineering Design. Springer, New York (2001)Google Scholar
  9. 9.
    Parmee, I.C.: Diverse evolutionary search for preliminary whole system design. In: Proceedings of the 4th International Conference on AI in Civil and Structural Engineering, Cambridge University, Cambridge (1995)Google Scholar
  10. 10.
    Huang, Z., Yip-Hoi, D.: High-level feature recognition using feature relationship graphs. Computer-Aided Design 34(8), 561–582 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cugini, U., Cascini, G., Ugolotti, M.: Enhancing interoperability in the design process – The PROSIT approach. Trends in Computer-Aided Innovation, pp. 189–200 (2007)Google Scholar
  12. 12.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)Google Scholar
  13. 13.
    Algorithme de Résolution des Problèmes d’Invention: ARIZ-85C, © G.S. Altshuller (1956/1985), English Version to be found at http://www.seecore.org/d/ariz85c_en.pdf
  14. 14.
    Hatchuel, A., Masson, P.L., Weil, B.: Studying creative design: the contribution of C-K theory. In: Gero, J.S. (ed.) Studying Design Creativity. Springer, Heidelberg (to appear, 2010)Google Scholar
  15. 15.
    Small, P.: A biological way to think about information systems, people and collaboration, http://www.stigmergicsystems.com/simpleexplain/biopaper2.html (Last accessed May 2010)
  16. 16.
    Ashby, M.F.: Material selection in mechanical design. Technology and Engineering, p. 603 (2005)Google Scholar
  17. 17.
    Ahuja, R.K., Ergun, Z., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques, vol. 123, pp. 75–102. Elsevier Science Publishers, BV (2002)Google Scholar
  18. 18.
    de Bono, E.: Lateral Thinking: Creativity Step by Step (1970)Google Scholar
  19. 19.
    Shayani, H., Bentley, P.J.: A more bio-plausible approach to the evolutionary inference of finite state machines. In: Genetic And Evolutionary Computation Conference. Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation. ACM New York (2007)Google Scholar
  20. 20.
    Eeckhout, L., Bosschere, K.D.: How accurate should early design stage power/performance tools be? In: A case Study with Statistical Simulation, vol. 73, pp. 45–62. Elsevier Science Inc., Amsterdam (2004)Google Scholar
  21. 21.
    Arciszewski, T., Kicinger, R. (eds.): Structural design inspired by nature. Saxe-Coburg Publications, Stirling (2005)Google Scholar
  22. 22.
    Zlotin, B., Zusman, A.: Problems of ARIZ Enhancement (1991)Google Scholar
  23. 23.
    Zlotin, B., Zusman, A.: Managing Innovation Knowledge - The Ideation Approach to the Search, Development, and Utilization of Innovation Knowledge. J. of the Altschuller Institute for TRIZ Studies (1999)Google Scholar
  24. 24.
    Sickafus, E.N. (ed.): Unified Structured Inventive Thinking – How to Invent. Ntelleck, LLC (1997)Google Scholar
  25. 25.
    Horowitz, R.: ASIT, Méthode pour des solutions innovantes (2004)Google Scholar
  26. 26.
    Savransky, S.D.: Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving. CRC Press LLC, Boca Raton (2000)CrossRefGoogle Scholar
  27. 27.
    Khomenko, N., Guio, R.D., Lelait, L., Kaikov, I.: A framework for OTSM TRIZ based computer support to be used in complex. Problem Management, vol. 30, pp. 88–104. Inderscience Publishers (2007)Google Scholar
  28. 28.
    Khomenko, N., Guio, R.D., Cavallucci, D.: Enhancing ECN’s abilities to address inventive strategies using OTSM-TRIZ. International J. of Collaborative Engineering 1(1-2), 98–113 (2009)CrossRefGoogle Scholar
  29. 29.
    Martelot, E.L., Bentley, P.J., Lotto, R.B.: A systemic computation platform for the modelling and analysis of processes with natural characteristics. In: Proc. of the 2007 GECCO Cconference Companion on Genetic and Evolutionary Computation. ACM, London (2007)Google Scholar
  30. 30.
    Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. Perennial, HarperCollins (1998)Google Scholar
  31. 31.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection (1992)Google Scholar
  32. 32.
    Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., Lanza, G.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  33. 33.
    Shaw, D., Miles, J., Gray, A.: Genetic Programming Within Civil Engineering. In: Adaptive Computing in Design and Manufacture Conference. Engineers House, Clifton, Bristol, UK (2004)Google Scholar
  34. 34.
    Perez, J.L., Monica, M., Rabuñal, J.R., Abella, F.M.: Applying Genetic Programming to Civil Engineering in the Improvement of Models, Codes and Norms. In: Proceedings of the 11th Ibero-American conference on AI: Advances in Artificial Intelligence, Springer, Lisbon (2008)Google Scholar
  35. 35.
    Rafal, K., Tomasz, A., Kenneth De, J.: Evolutionary computation and structural design. A survey of the state-of-the-art 83, 1943–1978 (2005)Google Scholar
  36. 36.
    Bentley, P.J., Corne, D.W.: Introduction to creative evolutionary systems, Creative evolutionary systems, pp. 1–75. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  37. 37.
    Altshuller, G.S.: The Innovation Algorithm: TRIZ, systematic innovation and technical creativity (Technical Innovation Center, Inc. ed.), Worcester, MA (1999)Google Scholar
  38. 38.
    Hermetz, J., Clément, J.: L’optimisation multidisciplinaire, Maîtrise de l’optimisation (ONERA ed)Google Scholar
  39. 39.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Céline Conrardy
    • 1
    • 2
  • Roland de Guio
    • 1
    • 2
  • Bruno Zuber
    • 1
    • 2
  1. 1.INSA de StrasbourgFrance
  2. 2.Lafarge Research CenterFrance

Personalised recommendations