Skip to main content

Topology of High-Latitude Magnetospheric Currents

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Abstract

The structure and localization of high latitude transverse and field-aligned currents are analyzed using the data from the Themis satellite mission. A number of evidences resumed in this paper, including daytime compression of magnetic field lines and the existence of magnetic field minima far from the equatorial plane make necessary to reanalyze the traditional points of view about the topology of high-latitude magnetospheric currents. Comparison between the dayside integral transverse currents at the geocentric distances 7–10R E , calculated assuming the validity of the condition of magnetostatic equilibrium and the nighttime transverse currents, showed that ordinary ring current has the high latitude continuation until geocentric distances ∼10–13R E . The problem of the location of Region 1 field-aligned current of Iijima and Potemra is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasofu SI, Chapman S (1972) Solar-terrestrial physics. Clarendel, Oxford

    Google Scholar 

  • Angelopoulos V (2008) The THEMIS mission. Space Sci Rev 141:5–34. doi:10.1007/s11214-008-9336-1

    Article  Google Scholar 

  • Antonova EE (1981) The reason why the field-aligned flow of electrons from to the ionosphere is a linear function of the field-aligned potential difference. Geomagn Aeron 21(6):1004–1008

    Google Scholar 

  • Antonova EE (2003) Investigation of the hot plasma pressure gradients and the configuration of magnetospheric currents from INTERBALL. Adv Space Res 31(5):1157–1166. doi:10.1016/S0273-1177(03)00077-2

    Article  Google Scholar 

  • Antonova EE (2004) Magnetostatic equilibrium and current systems in the Earth’s magnetosphere. Adv Space Res 33(5):752–760. doi:0.1016/S0273-1177(03)00636-7

    Article  Google Scholar 

  • Antonova EE (2008) Magnetospheric turbulence and properties of magnetospheric dynamics. Adv Space Res 41(10):1677–1681. doi:10.1016/j.asr.2007.05.057

    Article  Google Scholar 

  • Antonova EE, Tverskoy BA (1975) Nature of inverted-V electron precipitation band and Harang discontinuity in the evening sector of auroral ionosphere. Geomagn Aeron (Engl Transl) 15(1):85–90

    Google Scholar 

  • Antonova EE, Ganushkina NY (1997) Azimuthal hot plasma pressure gradients and dawn-dusk electric field formation. J Atmos Terr Phys 59:1343–1354. doi:10.1016/S1364-6826(96)00169-1

    Article  Google Scholar 

  • Antonova EE, Ganushkina NYu (2000) Inner magnetospheric currents and their role in the magnetosphere dynamics. Phys Chem Earth(C) 25(1–2):23–26. doi:10.1016/S1464-1917(99)00028-8

    Google Scholar 

  • Antonova EE, Stepanova MV, Teltzov MV, Tverskoy BA (1998) Multiple inverted-V structures and hot plasma pressure mechanism of plasma stratification. J Geophys Res 103:9317–9332. doi:10.1029/97JA03090

    Article  Google Scholar 

  • Antonova EE, Kirpichev IP, Stepanova MV (2006) Field-aligned current mapping and the problem of the generation of magnetospheric convection. Adv Space Res 38(8):1637–1641. doi:10.1016/j.asr.2005.09.042

    Article  Google Scholar 

  • Antonova EE, Kirpichev IP, Stepanova MV, Orlova KG, Ovchinnikov IL (2009a) Topology of the high latitude magnetosphere during large magnetic storms and the main mechanisms of relativistic electron acceleration. Adv Space Res 43(4):628–633. doi:10.1016/j.asr.2008.09.011

    Article  Google Scholar 

  • Antonova EE, Kirpichev IP, Ovchinnikov IL, Orlova KG, Stepanova MV (2009b) High latitude magnetospheric topology and magnetospheric substorm. Ann Geophys 27(10):4069–4073

    Article  Google Scholar 

  • Antonova EE, Kornilov IA, Kornilova TA, Kornilov OI, Stepanova MV (2009c) Features of auroral breakup obtained using data of ground-based television observations: case study. Ann Geophys 27(4):1413–1422.

    Article  Google Scholar 

  • Asano Y, Nakamura R, Baumjohann W, Runov A, Vörös Z, Volwerk M, Zhang TL., Balogh A, Klecker B, Rėme H (2005) How typical are atypical current sheets? Geophys Res Lett 32:L03108. doi:10.1029/2004GL021834

    Article  Google Scholar 

  • Boström R (1975) Mechanism for driving Birkeland currents. In: Hultgvist B, Stenflo L (eds) Physics of the hot plasma in the magnetosphere. Proceedings of the thirtieth nobel symposium. Kiruna, Sweden, 2–4 Apr 1975, pp 341–365

    Google Scholar 

  • Chua D, Brittnacher M, Parks G, Germany G, Spann J (1998) The new auroral feature: the nightside gap. Geophys Res Lett 25(2):3747–3750. doi:10.1029/98GL02806

    Article  Google Scholar 

  • Cumnock JA, Blomberg LG (2004) Transpolar arc evolution and associated potential patterns. Ann Geophys 22(4):1213–1231

    Article  Google Scholar 

  • De Michelis P, Daglis IA, Consolini G (1999) An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements. J Geophys Res 104(A12):28615–28624. doi:10.1029/1999JA900310

    Article  Google Scholar 

  • Delcourt DC, Sauvaud J-A (1999) Populating of the cusp and boundary layers by energetic (hundreds of keV) equatorial particles. J Geophys Res 104(A10):22635–22648. doi: 10.1029/1999JA900251

    Article  Google Scholar 

  • Fairfield DH, Mead GD (1975) Magnetospheric mapping with quantitative geomagnetic field models. J Geophys Res 80(4):535–548

    Article  Google Scholar 

  • Feldstein YI, Galperin YuI (1985) The aurororal luminosity structure in the high-latitude upper atmosphere. Its dynamics and relationship to the large-scale structure of the Earth’s magnetosphere. Rev Geophys 23(3):217–275

    Article  Google Scholar 

  • Grad H (1964) Some new variational properties of hydromagnetic equilibria. Phys Fluids 7:1283–1292. doi:10.1063/1.1711373

    Article  Google Scholar 

  • Hori T, Ohtani S, Lui ATY, McEntire RW, Maezawa K, Sato Y, Mukai TA (2003) Substorm associated drift echo of energetic protons observed by Geotail: radial density gradient structure. Geophys Res Lett 30(6):1330. doi:10.1029/20002GL016137

    Article  Google Scholar 

  • Iijima T, Potemra TA (1976) Field-aligned currents in the dayside cusp observed by TRIAD. J Geophys Res 81(12):5971–5979. doi:10.1029/JA081i034p05971

    Article  Google Scholar 

  • Iijima T, Potemra TA, Zanetti J (1990) Large-scale characteristics of magnetospheric equatorial currents. J Geophys Res 95(A2):991–999. doi: 10.1029/JA095iA02p00991

    Article  Google Scholar 

  • Knight LR (1973) Parallel electric fields. Planet Space Sci 21(5):741–750

    Article  Google Scholar 

  • Lui ATY, Hamilton DC (1992) Radial profile of quiet time magnetospheric parameters. J Geophys Res 97(A12):19325–19332. doi:10.1029/92JA01539

    Article  Google Scholar 

  • Lui ATY, Volwerk M, Dunlop MW, Alexeev IV et al (2008) Near-Earth substorm features from multiple satellite observations. J Geophys Res 113(A7):A07S26. doi:10.1029/2007JA012738

    Article  Google Scholar 

  • Lyons LR, Evans DS, Lundin R (1979) An observed relation between field aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. J Geophys Res 84(A2):457–461. doi:10.1029/JA084iA02p00457

    Article  Google Scholar 

  • Marklund GT, Blomberg LG, Potemra TA, Murphree JS, Rich JR, Stasiewicz K (1987) A new method to derive “instantaneous” high-latitude potential distributions from satellite measurements including auroral imager data. Geophys Res Lett 14(4):439–442. doi:10.1029/GL014i004p00439

    Article  Google Scholar 

  • Newell PT, Meng C-I (1992) Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophys Res Lett 19(6):609–612. doi:10.1029/92GL00404

    Article  Google Scholar 

  • Newell PT, Sotirelis T, Wing S (2009) Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J Geophys Res 114(A9):A09207. doi:10.1029/2009JA014326

    Article  Google Scholar 

  • Öztürk MK, Wolf RA (2007) Bifurcation of drift shells near the dayside magnetopause. J Geophys Res 112(A7):A07207. doi:10.1029/2006JA012102

    Article  Google Scholar 

  • Peredo M, Stern DP, Tsyganenko NA (1993) Are existing magnetic field models excessively stretched? J Geophys Res 98(A9):15343–15354

    Article  Google Scholar 

  • Potemra TA (1976) Large-scale characteristics of field-aligned currents determined from the Triad magnetometer experiment. In: Grandal B, Holtet JA (eds) Dynamical and chemical coupling between the neutral and ionized atmosphere. Proceedings of the advanced study institute. NATO Advanced Study Institute, Series C, vol 35. Spatind, Norway, 12–22 Apr 1977, pp 337–352

    Google Scholar 

  • Reeves GD, Weiss LA, Thomsen MF, McComas DJ (1996) A quantitative test of different magnetic field models using conjunctions between DMSP and Geosynchronous orbit. Radiation belts: modeling and standards. Geophysical monograph, vol 97. pp 167–172

    Google Scholar 

  • Shabansky VP, Antonova AE (1968) Topology of particle drift shells in the Earth’s magnetosphere. Geomagn Aeron (in Russian) 8:993–997

    Google Scholar 

  • Shue J-H, Newell PT, Liou K, Meng C-I, Kamide Y, Lepping RP (2002)Two-component auroras. Geophys Res Lett 29(10):CiteID 1379. doi:10.1029/2002GL014657

    Article  Google Scholar 

  • Sitnov MI, Tsyganenko NA, Ukhorskiy AY, Brandt PC (2008) Dynamical data-based modeling of the stormtime geomagnetic field with enhanced spatial resolution. J Geophys Res 113(A7):A07218. doi:10.1029/2007JA013003

    Article  Google Scholar 

  • Stasiewicz K (1991) A global model of gyroviscous field line merging at the magnetopause. J Geophys Res 96(1):77–86. doi: 10.1029/90JA02194

    Article  Google Scholar 

  • Stepanova MV, Antonova EE, Bosqued JM, Kovrazhkin RA, Aubel KR (2002) Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset. J Geophys Res 107(A7):CiteID 1134. doi:10.1029/2001JA003503

    Article  Google Scholar 

  • Stepanova MV, Antonova EE, Bosqued JM, Kovrazhkin R (2004) Azimuthal plasma pressure reconstructed by using the Aureol-3 satellite date during quiet geomagnetic conditions. Adv Space Res 33(5):737–741. doi:10.1016/S0273-1177(03)00641-0

    Article  Google Scholar 

  • Tsyganenko NA (1987) Global quantitative models of the geomagnetic field in the cislunar magnetosphere for different disturbance levels. Planet Space Sci 35(11):1347–1358. doi: 10.1016/0032-0633(87)90046-8

    Article  Google Scholar 

  • Tsyganenko NA (2002a) A model of the near magnetosphere with a dawn-dusk asymmetry: 1. Mathematical structure. J Geophys Res 107(A8):CiteID 1179. doi:10.1029/2001JA000219

    Article  Google Scholar 

  • Tsyganenko NA (2002b) A model of the near magnetosphere with a dawn-dusk asymmetry: 2. Parameterization and fitting to observations. J Geophys Res 107(A8):CiteID 1176. doi:10.1029/2001JA000220

    Google Scholar 

  • Tsyganenko NA, Sitnov MI (2007) Magnetospheric configurations from a high-resolution data-based magnetic field model. J Geophys Res 112(A6):A06225. doi:10.1029/2007JA012260

    Article  Google Scholar 

  • Tsyganenko NA, Stern DP (1996) A new generation global magnetosphere field model, based on spacecraft magnetometer data. ISTP Newsletter 6(1):21

    Google Scholar 

  • Tverskoy BA (1982) Field-aligned currents in the magnetosphere. Geomagn Aeron (Engl Transl) 22(6):812–815

    Google Scholar 

  • Vasyliunas VM (1970) Mathematical models of magnetospheric convections and its coupling to the ionosphere. In: McCormac BM (ed) Particles and fields in the magnetosphere. D. Reidel, Hingham, MA, pp 60–71

    Google Scholar 

  • Vorobjev VG, Iagodkina OY, Starkov GV, Feldstein YaI (2007): Features of the planetary distribution of auroral precipitation characteristics during substorms. Geomagn Aeron (in Russian) 47(2):193–204

    Article  Google Scholar 

  • Wing S, Newell PT (2000) Quiet time plasma sheet ion pressure contribution to Birkeland currents. J Geophys Res 105(A4):7793–7802. doi:10.1029/1999JA900464

    Article  Google Scholar 

  • Xing X, Lyons LR, Angelopoulos V, Larson D, McFadden J, Carlson C, Runov A, Auster U (2009) Azimuthal plasma pressure gradient in quiet time plasma sheet. Geophys Res Lett 36(14):L14105. doi:10.1029/2009GL038881

    Article  Google Scholar 

  • Zou S, Lyons LR, Wang C-P, Boudouridis A, Ruohoniemi JM, Anderson PC, Dyson PL, Devlin JC (2009) On the coupling between the Harang reversal evolution and substorm dynamics: a synthesis of SuperDARN, DMSP, and IMAGE observations. J Geophys Res 114(A1):A01205. doi:10.1029/2008JA013449

    Article  Google Scholar 

Download references

Acknowledgements

We thank the teams who provided THEMIS and Polar data obtained via NSSDC CDAWEB online facility. The work is supported by FONDECYT grant 1070131, RFBR grant 10-05-00247-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta E. Antonova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Antonova, E.E. et al. (2011). Topology of High-Latitude Magnetospheric Currents. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_11

Download citation

Publish with us

Policies and ethics