The Magnetopause, Its Boundary Layers and Pathways to the Magnetotail

  • Benoit Lavraud
  • Claire Foullon
  • Charles J. Farrugia
  • Jonathan P. Eastwood
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 3)


We review the current understanding of the dynamics of the Earth’s magnetopause and boundary layers. We describe basic insights and recent advances concerning the main mechanisms that mediate solar wind energy, momentum and plasma transfer into the magnetosphere: magnetic reconnection, the Kelvin–Helmholtz instability and diffusive processes. We also present more global aspects of magnetopause and boundary layer dynamics, focusing specifically on recent studies of global solar wind–magnetosphere coupling and on solar wind plasma pathways to the magnetotail.


Solar Wind Interplanetary Magnetic Field Magnetic Reconnection Solar Wind Plasma Reconnection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the reviewer for his/her constructive comments. CF acknowledges financial support from the UK STFC on the CFSA Rolling Grant. CJF acknowledges support from NASA grant NNX08AD11G. JPE holds an STFC Advanced Fellowship at ICL.


  1. Avanov LA, Smirnov VN, Waite JH Jr, Fuselier SA, Vaisberg OL (2001) High-latitude magnetic reconnection in sub-Alfvénic flow: interball tail observations on May 29, 1996. J Geophys Res 106:29491Google Scholar
  2. Bauer TM, Treumann RA, Baumjohann W (2001) Investigation of the outer and inner low-latitude boundary layers. Ann Geophys 19:1065–1088Google Scholar
  3. Bavassano Cattaneo MB et al (2006) Kinetic signatures during a quasi-continuous lobe reconnection event: cluster ion spectrometer (CIS) observations. J Geophys Res 111:A09212. doi:10.1029/2006JA011623Google Scholar
  4. Belmont G, Chanteur G (1989) Advances in magnetopause Kelvin-Helmholtz instability studies. Phys Scr 40:124–128Google Scholar
  5. Berchem J, Russell CT (1984) Flux transfer events on the magnetopause: spatial distribution and controlling factors. J Geophys Res 89(A8):6689–6703Google Scholar
  6. Berchem J et al (2008) Reconnection at the dayside magnetopause: comparisons of global MHD simulation results with Cluster and Double Star observations. J Geophys Res 113:A07S12. doi:10.1029/2007JA012743Google Scholar
  7. Birn J et al (2001) Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge. J Geophys Res 106(A3):3715–3719Google Scholar
  8. Biskamp D (1986) Magnetic reconnection via current sheets. Phys Fluids 29:1520Google Scholar
  9. Borovsky JE (2008) The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. J Geophys Res 113:A08228. doi:10.1029/2007JA012646Google Scholar
  10. Borovsky JE, Denton MH (2006) Effect of plasmaspheric drainage plumes on solar-wind/magnetosphere coupling. Geophys Res Lett 33:L20101. doi:10.1029/2006GL026519Google Scholar
  11. Borovsky JE, Hesse M (2007) The reconnection of magnetic fields between plasmas with different densities: scaling relations. Phys Plasmas 14:102309Google Scholar
  12. Burton RK, McPherron RL, Russell CT (1975) An empirical relationship between interplanetary conditions and Dst. J Geophys Res 80(31):4204–4214Google Scholar
  13. Cargill PJ, Lavraud B, Owen CJ, Grison B, Dunlop MW, Cornilleau-Wehrlin N, Escoubet CP, Paschmann G, Phan TD, Rezeau L, Bogdanova Y, Nykyri K (2005) Cluster at the magnetospheric cusps. Space Sci Rev 118(1–4):321–366. doi:10.1007/s11214-005-3835-0Google Scholar
  14. Cassak PA, Shay MA (2007) Scaling of asymmetric magnetic reconnection: general theory and collisional simulations. Phys Plasmas 14:102114. doi:10.1063/1.2795630Google Scholar
  15. Chandler MO, Avanov LA (2003) Observations at low latitudes of magnetic merging signatures within a flux transfer event during a northward interplanetary magnetic field. J Geophys Res 108(A10):1358. doi:10.1029/2003JA009852Google Scholar
  16. Chapman S, Ferraro VC (1931) A new theory of magnetic storms. Terr Magn Atmos Elec 36:171Google Scholar
  17. Chaston CC, Johnson JR, Wilber M, Acuna M, Goldstein ML, Rème H (2009) Kinetic Alfvén wave turbulence and transport through a reconnection diffusion region. Phys Rev Lett 102:015001.1–015001.4. doi:10.1103/PhysRevLett.102.015001Google Scholar
  18. Chaston CC, Wilber M, Mozer FS, Fujimoto M, Goldstein ML, Acuna M, Rème H, Fazakerley A (2007) Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfven waves at the Earth’s magnetopause. Phys Rev Lett 99:175004.1–175004.4. doi:10.1103/PhysRevLett.99.175004Google Scholar
  19. Chaston C et al (2008) Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys Res Lett 35:L17S08. doi:10.1029/2008GL033601Google Scholar
  20. Chen FF (1984) Introduction to plasma physics and controlled fusion. Kluwer, DordrechtGoogle Scholar
  21. Claudepierre SG, Elkington SR, Wiltberger M (2008) Solar wind driving of magneto-spheric ULF waves: pulsations driven by velocity shear at the magnetopause. J Geophys Res 113:A05218. doi:10.1029/2007JA012890Google Scholar
  22. Collado-Vega YM, Kessel RL, Shao X, Boller RA (2007) MHD flow visualization of magnetopause boundary region vortices observed during high-speed streams. J Geophys Res 112:A06213. doi:10.1029/2006JA012104Google Scholar
  23. Cooling BMA, Owen CJ, Schwartz SJ (2001) Role of the magnetosheath flow in determining the motion of open flux tubes. J Geophys Res 106(A9):18763–18776Google Scholar
  24. Cowee MM, Winske D, Gary SP (2009) Two-dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvin-Helmholtz instability. J Geophys Res 114:A10209. doi:10.1029/2009JA014222Google Scholar
  25. Cowley SWH (1976) Comments on the merging of non antiparallel field. J Geophys Res 81:3455–3458Google Scholar
  26. Cowley SWH (1982) The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. Rev Geophys 20(3):531–565Google Scholar
  27. Cowley SWH, Owen CJ (1989) A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet Space Sci 37:1461–1475Google Scholar
  28. Crooker NU (1979) Dayside merging and cusp geometry. J Geophys Res 84:951–959Google Scholar
  29. Crooker NU, Eastman TE, Satiles GS (1979) Observations of plasma depletion in the magnetosheath at the dayside magnetopause. J Geophys Res 84:869Google Scholar
  30. Daum P, Wild JA, Penz T, Woodfield EE, Rème H, Fazakerley AN, Daly PW, Lester M (2008) Global MHD simulation of flux transfer events at the high-latitude magnetopause observed by the Cluster spacecraft and the SuperDARN radar system. J Geophys Res 113:A07S22. doi:10.1029/2007JA012749Google Scholar
  31. deHoffmann F, Teller E (1950) Magnetohydrodynamics shocks. Phys Rev 80:692Google Scholar
  32. De Keyser J (2005) The Earth’s magnetopause: reconstruction of motion and structure. Space Sci Rev 121(1–4):225–235Google Scholar
  33. De Keyser J, Roth M (2003) Structural analysis of periodic surface waves on the magnetospheric boundary. Planet Space Sci 51:757–768Google Scholar
  34. De Keyser J, Darrouzet F, Roth M (2002) Trying to bring the magnetopause to a standstill. Geophys Res Lett 29:93. doi:10.1029/2002GL015001Google Scholar
  35. De Keyser J, Dunlop MW, Owen CJ, Sonnerup BUÖ, Haaland S, Vaivads A, Lundin R, Rezeau L, Paschmann G (2005) Magnetopause and boundary layer. Space Sci Rev 118(1–4):231–320Google Scholar
  36. De Keyser J, Gustafsson G, Roth M et al (2004) Reconstruction of the magnetopause and low-latitude boundary layer topology using Cluster multi-point measurements. Ann Geophys 22(7):2381–2389Google Scholar
  37. Deng XH, Matsumoto H (2001) Rapid magnetic reconnection in the Earth’s magnetosphere mediated by whistler waves. Nature 410:557–560Google Scholar
  38. Dorelli JC, Bhattacharjee A (2009) On the generation and topology of flux transfer events. J Geophys Res 114:A06213. doi:10.1029/2008JA013410Google Scholar
  39. Drake JF, Swisdak M, Phan TD, Cassak PA, Shay MA, Lepri ST, Lin RP, Quataert E, Zurbuchen TH (2009) Ion heating resulting from pickup in magnetic reconnection exhausts. J Geophys Res 114:A05111. doi:10.1029/2008JA013701Google Scholar
  40. Drake JF et al (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443(7111):553–556Google Scholar
  41. Dungey JW (1954) Electrodynamics of the outer atmospheres. Penn State Ionos Res Lab Sci Rep 69Google Scholar
  42. Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47Google Scholar
  43. Dunlop MW, Balogh A, Glassmeier K-H (2002) Four-point Cluster application of magnetic field analysis tools: the discontinuity analyzer. J Geophys Res 107(A11):1385. doi:10.1029/2001JA005089Google Scholar
  44. Dunlop MW, Zhang QH, Xiao CJ et al (2009) Reconnection at high latitudes: antiparallel merging. Phys Rev Lett 102(7):075005Google Scholar
  45. Eastwood JP, Phan T-D, Mozer FS, Shay MA, Fujimoto M, Retinò A, Hesse M, Balogh A, Lucek EA, Dandouras I (2007) Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. J Geophys Res 112:A06235. doi:10.1029/2006JA012158Google Scholar
  46. Eastwood JP, Phan TD, Øieroset M, Shay MA (2010) Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001–2005 cluster observations and comparisons with simulations. J Geophys Res 115:A08215. doi:10.1029/2009JA014962Google Scholar
  47. Eriksson S et al (2009) Magnetic island formation between large-scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. J Geophys Res 114:A00C17. doi:10.1029/2008JA013505Google Scholar
  48. Escoubet CP, Smith MF, Fung SF, Anderson PC, Hoffman RA, Basinska EM, Bosqued J-M (1992) Staircase ion signature in the polar cusp – A case study. Geophys Res Lett 19:1735Google Scholar
  49. Fairfield DH, Farrugia CJ, Mukai T, Nagai T, Fedorov A (2003) Motion of the dusk flank boundary layer caused by solar wind pressure changes and the Kelvin-Helmholtz instability: 10–11 January 1997. J Geophys Res 108(A12):1460. doi:10.1029/2003JA010134Google Scholar
  50. Fairfield DH, Kuznetsova MM, Mukai T, Nagai T, Gombosi TI, Ridley AJ (2007) Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: observations and simulation. J Geophys Res 112:A8. doi:10.1029/2006JA012052Google Scholar
  51. Fairfield DH, Otto A, Mukai T, Kokubun S, Lepping RP, Steinberg JT, Lazarus AJ, Yamamoto T (2000) Geotail observations of the Kelvin-Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields. J Geophys Res 105(A9):21159–21173Google Scholar
  52. Farrugia CJ, Gratton FT, Torbert RB (2001) Viscous-type processes in the solar wind-magnetosphere interaction. Space Sci Rev 95:443–456Google Scholar
  53. Farrugia CJ, Gratton FT, Torbert RB, Bender L, Gnavi G, Ogilvie KW, Lepping RP, Stauning P (2003) On the dependence of dayside Kelvin-Helmholtz activity on IMF orientation. Adv Space Res 31(4):1105Google Scholar
  54. Farrugia C, Gratton F, Bender L, Biernat H, Erkaev N, Quinn J, Torbert R, Dennisenko V (1998b) Charts of joint Kelvin–Helmholtz and Rayleigh–Taylor instabilites at the dayside magnetopause for strongly northward interplanetary magnetic field. J Geophys Res 103(A4):6703–6727Google Scholar
  55. Farrugia CJ, Sandholt PE, Denig WF, Torbert RB (1998a) Observation of a correspondence between poleward moving auroral forms and stepped cusp ion precipitation. J Geophys Res 103(A5):9309–9315Google Scholar
  56. Farrugia CJ et al (2000) Coordinated wind, interball/tail, and ground observations of Kelvin-Helmholtz waves at the near-tail, equatorial magnetopause at dusk: January 11, 1997. J Geophys Res 105:7639–7667Google Scholar
  57. Fear RC, Milan SE, Fazakerley AN, Fornaçon K-H, Carr CM, Dandouras I (2009) Simultaneous observations of flux transfer events by THEMIS, Cluster, Double Star, and SuperDARN: acceleration of FTEs. J Geophys Res 114:A10213. doi:10.1029/2009JA014310Google Scholar
  58. Fedder JA, Lyon JG (1995) The Earth’s magnetosphere is 165 RE long: self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field. J Geophys Res 100(A3):3623–3635Google Scholar
  59. Fitzenreiter RJ, Ogilvie KW (1995) Kelvin-Helmholtz instability at the magnetopause: observations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 277Google Scholar
  60. Forbes TG (1995) How does fast reconnection work? In: Meneguzzi M, Pouquet A, Sulem PL (eds) Small scale structures in three-dimensional hydro and magnetohydrodynamic turbulence. Lecture notes in physics, vol 462. Springer, Paris, pp 319–324Google Scholar
  61. Foullon C, Farrugia CJ, Fazakerley AN, Owen CJ, Gratton FT, Torbert RB (2008) Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause. J Geophys Res 113:A11203. doi:10.1029/2008JA013175Google Scholar
  62. Foullon C, Farrugia CJ, Fazakerley AN, Owen CJ, Gratton FT, Torbert RB (2010) On the multi-spacecraft determination of periodic surface wave phase speeds and wavelengths. J Geophys Res. doi: 10.1029/2009JA015189 (in press)Google Scholar
  63. Frey HU, Phan TD, Fuselier SA, Mende SB (2003) Continuous magnetic reconnection at Earth’s magnetopause. Nature 426:533–537Google Scholar
  64. Fujimoto M, Terasawa T (1994) Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex. J Geophys Res 99:8601Google Scholar
  65. Fujimoto M, Terasawa T, Mukai T, Saito Y, Yamamoto T, Kokubun S (1998) Plasma entry from the flanks of the near-Earth magnetotail: geotail observations. J Geophys Res 103:4391Google Scholar
  66. Fuselier SA, Klumpar DM, Shelley EG (1991) Ion reflection and transmission during reconnection at the Earth’s subsolar magnetopause. Geophys Res Lett 18:139Google Scholar
  67. Fuselier SA, Petrinec SM, Trattner KJ (2000) Stability of the high-Latitude reconnection site for steady northward IMF. Geophys Res Lett 27:473Google Scholar
  68. Fuselier SA, Petrinec SM, Trattner KJ, Fujimoto M, Hasegawa H (2007) Simultaneous observations of fluctuating cusp aurora and low-latitude magnetopause reconnection. J Geophys Res 112:A11207. doi:10.1029/2007JA012252Google Scholar
  69. Fuselier SA, Trattner KJ, Petrinec SM, Owen CJ, Rème H (2005) Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J Geophys Res 110:A06212. doi:10.1029/2004JA010805Google Scholar
  70. Gonzalez WD, Mozer FS (1974) A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field. J Geophys Res 79(28):4186–4194Google Scholar
  71. Gosling JT (2009) Magnetic reconnection in the heliosphere: new insights from observations in the solar wind. In: Gopalswamy N, Webb DF (eds) Universal heliophysical processes. Proceedings of the International Astronomical Union, IAU Symposium 257(4), Cambridge University Press, Cambridge, pp 367–377. doi:10.1017/S1743921309029597Google Scholar
  72. Gosling JT, Asbridge JR, Bame SJ, Feldman WC, Paschmann G, Sckopke N, Russell CT (1982) Evidence for quasi-stationary reconnection at the dayside magnetopause. J Geophys Res 87(16):2147–2158Google Scholar
  73. Gosling JT, Thomsen MF, Bame SJ, Onsager TG, Russell CT (1990) The electron edge of the low-latitude boundary layer during accelerated flow events. Geophys Res Lett 17:1933Google Scholar
  74. Gosling J, Thomsen M, Bame S, Elphic R, Russell C (1991) Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. J Geophys Res 96(A8):14097–14106Google Scholar
  75. Gosling JT, Eriksson S, Blush LM, Phan TD, Luhmann JG, McComas DJ, Skoug RM, Acuna MH, Russell CT, Simunac KD (2007) Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending > 4.26 × 106 km in the solar wind at 1 AU. Geophys Res Lett 34:L20108. doi:10.1029/2007GL031492Google Scholar
  76. Gratton FT, Farrugia CJ, Cowley SWH (1996) Is the dayside magnetopause Rayleigh-Taylor unstable sometimes? J Geophys Res 101:4929Google Scholar
  77. Gratton FT, Gnavi G, Farrugia CJ, Bender L (2003) The stability of the pristine magnetopause. Planet Space Sci 51:769Google Scholar
  78. Gratton FT, Bender L, Farrugia CJ, Gnavi G (2004) Concerning a problem related to the Kelvin-Helmholtz stability of the thin magnetopause. J Geophys Res 109(A4):A04211. doi:10.1029/2003JA010146Google Scholar
  79. Grocott A, Badman SV, Cowley SWH, Milan SE, Nichols JD, Yeoman TK (2009) Magnetosonic Mach number dependence of the efficiency of reconnection between planetary and interplanetary magnetic fields. J Geophys Res 114:A07219. doi:10.1029/2009JA014330Google Scholar
  80. Haaland S et al (2004) Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods. Ann Geophys 22:1347Google Scholar
  81. Hapgood MA, Bryant DA (1992) Exploring the magnetospheric boundary layer. Planet Space Sci 40(10):1431–1459Google Scholar
  82. Hasegawa H, Sonnerup BUÖ, Dunlop MW, Balogh A, Haaland SE, Klecker B, Paschmann G, Lavraud B, Dandouras I, Rème H (2004a) Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method. Ann Geophys 22:1251–1266Google Scholar
  83. Hasegawa H, Fujimoto M, Phan TD et al (2004b) Rolled-up Kelvin-Helmholtz vortices and associated solar wind entry at Earth’s magnetopause. Nature 430:755–758Google Scholar
  84. Hasegawa H, Sonnerup BUÖ, Owen CJ, Klecker B, Paschmann G, Balogh A, Rème H (2006a) The structure of flux transfer events recovered from Cluster data. Ann Geophys 24:603–618Google Scholar
  85. Hasegawa H, Fujimoto M, Takagi K, Saito Y, Mukai T, Rème H (2006b) Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause. J Geophys Res 111:A09203. doi:10.1029/2006JA011728Google Scholar
  86. Hasegawa H, Sonnerup BUÖ, Fujimoto M, Saito Y, Mukai T (2007) Recovery of streamlines in the flank low-latitude boundary layer. J Geophys Res 112:A04213. doi:10.1029/2006JA012101Google Scholar
  87. Hasegawa H et al (2009) Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations. Geophys Res Lett 36:L15107. doi:10.1029/2009GL039410Google Scholar
  88. Hasegawa H, Wang J, Dunlop MW, Pu ZY, Zhang QH, Lavraud B, Taylor MG, Constantinescu DO, Berchem J, Angelopoulos V, McFadden JP, Frey HU, Panov EV, Volwerk M, Bogdanova YV (2010) Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause. Geophys Res Lett 37:L16101. doi:10.1029/2010GL044219Google Scholar
  89. Hau L-N, Sonnerup BUÖ (1999) Two-dimensional coherent structures in the magnetopause: recovery of static equilibria from single-spacecraft data. J Geophys Res 104:6899–6917Google Scholar
  90. Hu Q, Sonnerup BUÖ (2003) Reconstruction of two-dimensional structures in the magnetopause: method improvements. J Geophys Res 108(A1):1011. doi:10.1029/2002JA009323Google Scholar
  91. Johnson JR, Cheng CZ (1997) Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys Res Lett 24(11):1423–1426Google Scholar
  92. Johnson JR, Cheng CZ (2001) Stochastic ion heating at the magnetopause due to kinetic Alfvén waves. Geophys Res Lett 28(23):4421–4424Google Scholar
  93. Karimabadi H, Sipes TB, Wang Y, Lavraud B, Roberts A (2009) A new multivariate time series data analysis technique: automated detection of flux transfer events using cluster data. J Geophys Res 114:A06216. doi:10.1029/2009JA014202Google Scholar
  94. Kawano H, Kokubun S, Yamamoto T, Tsuruda K, Hayakawa H, Nakamura M, Okada T, Matsuoka A, Nishida A (1994) Magnetopause characteristics during a four-hour interval of multiple crossings observed with GEOTAIL. Geophys Res Lett 21(25):2895–2898Google Scholar
  95. Kessel RL, Chen S-H, Green JL et al (1996) Evidence of high-latitude reconnection during northward IMF: Hawkeye observations. Geophys Res Lett 23(5):583–586Google Scholar
  96. Kivelson MG, Chen S-H (1995) The magnetopause: surface waves and instabilities and their possible dynamical consequences. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 257Google Scholar
  97. Lavraud B, Borovsky JE (2008) Altered solar wind-magnetosphere interaction at low Mach numbers: coronal mass ejections. J Geophys Res 113:A00B08. doi:10.1029/2008JA013192Google Scholar
  98. Lavraud B, Phan TD, Dunlop MW, Taylor MGGT, Cargill PJ, Bosqued J-M, Dandouras I, Rème H, Sauvaud J-A, Escoubet CP, Balogh A, Fazakerley A (2004) The exterior cusp and its boundary with the magnetosheath under northward IMF: cluster multi-event analysis. Ann Geophys 22(8):3039–3054Google Scholar
  99. Lavraud B, Fedorov A, Budnik E, Thomsen MF, Grigoriev A, Cargill PJ, Dunlop MW, Rème H, Dandouras I, Balogh A (2005a) High-altitude cusp flows dependence on IMF orientation: a three-year cluster statistical study. J Geophys Res 110:A02209. doi:10.1029/2004JA010804Google Scholar
  100. Lavraud B, Thomsen MF, Taylor MGGT, Wang YL, Phan TD, Schwartz SJ, Elphic RC, Fazakerley A, Rème H, Balogh A (2005b) Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: implications for high-latitude reconnection. J Geophys Res 110:A06209. doi:10.1029/2004JA010808Google Scholar
  101. Lavraud B, Thomsen MF, Lefebvre B, Schwartz SJ, Seki K, Phan TD, Wang YL, Fazakerley A, Rème H, Balogh A (2006) Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF. J Geophys Res 111:A05211. doi:10.1029/2005JA011266Google Scholar
  102. Lavraud B et al (2009) Tracing solar wind plasma entry into the magnetosphere using ion-to-electron temperature ratio. Geophys Res Lett 36:L18109. doi:10.1029/2009GL039442Google Scholar
  103. Le G, Russell CT, Gosling JT, Thomsen MF (1996) ISEE observations of low-latitude boundary layer for northward interplanetary magnetic field: Implications for cusp reconnection. J Geophys Res 101(A12):27239–27249Google Scholar
  104. Le G et al (2008) Flux transfer events simultaneously observed by Polar and Cluster: flux rope in the subsolar region and flux tube addition to the polar cusp. J Geophys Res 113:A01205. doi:10.1029/2007JA012377Google Scholar
  105. Lee LC, Johnson JR, Ma ZW (1994) Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. J Geophys Res 99(A9):17405–17411Google Scholar
  106. Lemaire J, Roth M (1978) Penetration of solar wind plasma elements into the magnetosphere. J Atmos Sol Terr Phys 40:331Google Scholar
  107. Levy RH, Petschek HE, Siscoe GL (1964) Aerodynamic aspects of the magnetospheric flow. AIAA J 2:2065Google Scholar
  108. Li WH, Raeder J, Dorelli J et al (2005) Plasma sheet formation during long period of northward IMF, Geophys Res Lett 32(12):L12S08, doi:10.1029/2004GL021524Google Scholar
  109. Li W, Raeder J, Thomsen MF, Lavraud B (2008) Solar wind plasma entry into the magnetosphere under northward IMF conditions. J Geophys Res 113:A04204. doi:10.1029/2007JA012604Google Scholar
  110. Li W, Raeder J, Øieroset M, Phan TD (2009) Cold dense magnetopause boundary layer under northward IMF: results from THEMIS and MHD simulations. J Geophys Res 114:A00C15. doi:10.1029/2008JA013497Google Scholar
  111. Liu J, Angelopoulos V, Sibeck D, Phan T, Pu ZY, McFadden J, Glassmeier KH, Auster HU (2008) THEMIS observations of the dayside traveling compression region and flows surrounding flux transfer events. Geophys Res Lett 35:L17S07. doi:10.1029/2008GL033673Google Scholar
  112. Lockwood M, Smith MF (1992) The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation, J Geophys Res 97:14841Google Scholar
  113. Lockwood M et al (2001) Coordinated Cluster and ground-based instrument observations of transient changes in the magnetopause boundary layer during an interval of predominantly northward IMF: relation to reconnection pulses and FTE signatures. Ann Geophys 19:1613–1640Google Scholar
  114. Lockwood M, Lanchester BS, Frey HU, Throp K, Morley SK, Milan SE, Lester M (2003) IMF control of cusp proton emission intensity and dayside convection: implications for component and anti-parallel reconnection. Ann Geophys 21:955–982Google Scholar
  115. Lopez RE, Wiltberger M, Hernandez S, Lyon JG (2004) Solar wind density control of energy transfer to the magnetosphere. Geophys Res Lett 31:L08804. doi:10.1029/2003GL018780Google Scholar
  116. Luhmann JR, Walker RJ, Russell CT, Crooker NU, Speiter JR, Stahara SS (1984) Patterns of potential magnetic field merging sites on the dayside magnetopause. J Geophys Res 89:1739–1742Google Scholar
  117. Lui ATY (2001) Current controversies in magnetospheric physics. Rev Geophys 39:535Google Scholar
  118. Lui ATY et al (2008) Reconstruction of a magnetic flux rope from THEMIS observations. Geophys Res Lett 35:L17S05. doi:10.1029/2007GL032933Google Scholar
  119. Lundin R (1997) Observational and theoretical aspects of processes other than merging and diffusion governing plasma transport across the magnetopause. Space Sci Rev 80(1–2):269–304Google Scholar
  120. Lundin R, Sauvaud J-A, Rème H, Balogh A, Dandouras I, Bosqued JM, Carlson C, Parks GK, Moebius E, Kistler LM, Klecker B, Amata E, Formisano V, Dunlop MW, Eliasson L, Korth A, Lavraud B, McCarthy M (2003) Evidence for impulsive solar wind plasma penetration through the dayside magnetopause. Ann Geophys 21(2):457–472Google Scholar
  121. Matsumoto Y, Hoshino M (2006) Turbulent mixing and transport of collsionless plasmas across a stratified velocity shear layer. J Geophys Res 111:A05213. doi:10.1029/2004JA010988Google Scholar
  122. Matsumoto Y, Seki K (2007) The secondary instability initiated by the three-dimensional nonlinear evolution of the Kelvin-Helmholtz instability. J Geophys Res 112:A06223. doi:10.1029/2006JA012114Google Scholar
  123. McFadden JP, Carlson CW, Larson D, Bonnell J, Mozer FS, Angelopoulos V, Glassmeier K-H, Auster U (2008) Structure of plasmaspheric plumes and their participation in magnetopause reconnection: first results from THEMIS. Geophys Res Lett 35:L17S10. doi:10.1029/2008GL033677Google Scholar
  124. Milan SE, Lester M, Greenwald RA, Sofko G (1999) The ionospheric signature of transient dayside reconnection and the associated pulsed convection return flow. Ann Geophys 17:1166–1171Google Scholar
  125. Min KW, Kim T, Lee H (1997) Effects of magnetic reconnection in the Kelvin-Helmholtz instability at the magnetospheric boundary. Planet Space Sci 45(4):495–510Google Scholar
  126. Mishin VV (1993) Accelerated motions of the magnetopause as a trigger of the Kelvin-Helmholtz instability. J Geophys Res 98(A12):21365–21371Google Scholar
  127. Miura A (1984) Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction. J Geophys Res 89:818Google Scholar
  128. Miura A (1995a) Kelvin-Helmholtz instability at the magnetopause: computer simulations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph, vol 90. American Geophysical Union, Washington, DC, p 285Google Scholar
  129. Miura A (1995b) Dependence of the magnetopause Kelvin-Helmholtz instability on the orientation of the magnetosheath magnetic field. Geophys Res Lett 22(21):2993–2996Google Scholar
  130. Moore TE, Fok M-C, Chandler MO (2002) The dayside reconnection X line. J Geophys Res 107(A10):1332. doi:10.1029/2002JA009381Google Scholar
  131. Moore TE et al (2005) Plasma sheet and ring current formation from solar and polar wind sources. J Geophys Res 110:A02210. doi:10.1029/2004JA010563Google Scholar
  132. Moore TE, Fok M-C, Delcourt DC, Slinker SP, Fedder JA (2007) Global aspects of solar wind–ionosphere interactions. J Atmos Sol Terr Phys 69:265. doi:10.1016/j.jastp.2006.08.009Google Scholar
  133. Moore TE, Fok M-C, Delcourt DC, Slinker SP, Fedder JA (2008) Plasma plume circulation and impact in an MHD substorm. J Geophys Res 113:A06219. doi:10.1029/2008JA013050Google Scholar
  134. Mozer FS, Retinò A (2007) Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. J Geophys Res 112:A10206. doi:10.1029/2007JA012406Google Scholar
  135. Mozer FS, Pritchett PL (2009) Regions associated with electron physics in asymmetric magnetic field reconnection. Geophys Res Lett 36:L07102. doi:10.1029/2009GL037463Google Scholar
  136. Mozer FS, Hayakawa H, Kokubun S, Nakamura M, Okada T, Yamamoto T, Tsuruda K (1994) The morningside low-latitude boundary layer as determined from electric and magnetic field measurements on Geotail. Geophys Res Lett 21(25):2983–2986Google Scholar
  137. Mozer FS, Angelopoulos V, Bonnell J, Glassmeier KH, McFadden JP (2008) THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection. Geophys Res Lett 35:L17S04. doi:10.1029/2007GL033033Google Scholar
  138. Nagai T, Shinohara I, Fujimoto M, Hoshino M, Saito Y, Machida S, Mukai T (2001) Geotail observations of the Hall current system: evidence of magnetic reconnection in the magnetotail. J Geophys Res 106(A11):25929–25949Google Scholar
  139. Nakamura T, Fujimoto M (2005) Magnetic reconnection within rolled-up MHD-scale Kelvin-Helmholtz vortices: two-fluid simulations including finite electron inertial effects. Geophys Res Lett 32:L21102. doi:10.1029/2005GL023362Google Scholar
  140. Newell PT, Onsager TG (2003) Earth’s low-latitude boundary layer. Geophysical monograph series, vol 133Google Scholar
  141. Newell PT, Sotirelis T, Liou K, Meng C-I, Rich FJ (2007) A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res 112:A01206. doi:10.1029/2006JA012015Google Scholar
  142. Newell PT, Sotirelis T, Liou K, Rich FJ (2008) Pairs of solar wind-magnetosphere coupling functions: combining a merging term with a viscous term works best. J Geophys Res 113:A04218. doi:10.1029/2007JA012825Google Scholar
  143. Nishino MN, Fujimoto M, Terasawa T, Ueno G, Mukai T, Saito Y (2007a) Origin of temperature anisotropies in the cold plasma sheet: geotail observations around the Kelvin-Helmholtz votices. Ann Geophys 25:2069–2086Google Scholar
  144. Nishino MN, Fujimoto M, Terasawa T, Ueno G, Maezawa K, Mukai T, Saito Y (2007b) Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet. Ann Geophys 25:769–777Google Scholar
  145. Nishino MN, Fujimoto M, Terasawa T, Ueno G, Maezawa K, Mukai T, Saito Y (2007c) Temperature anisotropies of electrons and two-component protons in the dusk plasma sheet. Ann Geophys 25:71417–71432Google Scholar
  146. Nykyri K, Otto A (2001) Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys Res Lett 28(18):3565–3568Google Scholar
  147. Nykyri K, Otto A, Lavraud B, Mouikis C, Kistler LM, Balogh A, Rème H (2006) Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann Geophys 24(10):2619–2643Google Scholar
  148. Ogino T, Walker RJ, Ashour-abdalla M (1994) A global magnetohydrodynamic simulation of the response of the magnetosphere to a northward turning of the interplanetary magnetic field. J Geophys Res 99(A6):11027–11042Google Scholar
  149. Øieroset M, Phan TD, Fujimoto M, Lin RP, Lepping RP (2001) In situ detection of collisionless reconnection in Earth’s magnetotail. Nature 412:414–417Google Scholar
  150. Øieroset M, Raeder J, Phan TD et al (2005) Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003. Geophys Res Lett 32(12):L12S07. doi:10.1029/2004GL021523Google Scholar
  151. Øieroset M, Phan TD, Angelopoulos V, Eastwood JP, McFadden J, Larson D, Carlson CW, Glassmeier K-H, Fujimoto M, Raeder J (2008) THEMIS multi-spacecraft observations of magnetosheath plasma penetration deep into the dayside low-latitude magnetosphere for northward and strong by IMF. Geophys Res Lett 35:L17S11. doi:10.1029/2008GL033661Google Scholar
  152. Onsager TG et al (1991) Model of electron and ion distributions in the plasma sheet boundary layer. J Geophys Res 96:20999Google Scholar
  153. Onsager TG, Scudder JD, Lockwood M, Russell CT (2001) Reconnection at the high latitude magnetopause during northward interplanetary magnetic field conditions. J Geophys Res 106(A11):25,467– 25,488Google Scholar
  154. Otto A, Fairfield DH (2000) Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J Geophys Res 105(A9):21175–21190Google Scholar
  155. Owen CJ, Fazakerley AN, Carter PJ, Coates AJ, Krauklis IC, Szita S, Taylor MGGT, Travnicek P, Watson G, Wilson RJ, Balogh A, Dunlop MW (2001) CLUSTER PEACE observations of electrons during magnetosheric flux transfer events. Ann Geophys 19:1509–1522Google Scholar
  156. Owen CJ, Taylor MGGT, Krauklis IC, Fazakerley AN, Dunlop MW, Bosqued JM (2004) Cluster observations of surface waves on the dawn flank magnetopause. Ann Geophys 22:971–983Google Scholar
  157. Parker EN (1963) The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys J Suppl Ser 8:177Google Scholar
  158. Paschmann G (1997) Observational evidence for transfer of plasma across the magnetopause. Space Sci Rev 80(1–2):217–234Google Scholar
  159. Paschmann G (2008) Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys Res Lett 35:L19109. doi:10.1029/2008GL035297Google Scholar
  160. Paschmann G, Sonnerup BUÖ, Papamastorakis I, Sckopke N, Haerendel G, Bame SJ, Asbridge JR, Gosling JT, Russell CT, Elphic RC (1979) Plasma acceleration at the Earth’s magnetopause: evidence for magnetic reconnection. Nature 282:243Google Scholar
  161. Penz T, Farrugia CJ, Ivanov VV, Ivanova VV, Semenov VS, Semenov VS, Biernat HK, Torbert R (2008) Two-spacecraft observations of reconnection at the magnetopause: model results and data comparison. Adv Space Res 41(10):1551–1555Google Scholar
  162. Perreault P, Akasofu S-I (1978) A study of geomagnetic storms. Geophys JR Astron Soc 54:547–573Google Scholar
  163. Petschek HE (1964) Magnetic field annihilation. In: Proceedings of AAS-NASA Symposium on Physics of Solar Flares, NASA Special Publication, SP-50, p 425Google Scholar
  164. Phan T-D, Paschmann G, Baumjohann W, Sckopke N, Lühr H (1994) The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J Geophys Res 99(A1):121–141Google Scholar
  165. Phan TD, Sonnerup BUÖ, Lin RP (2001) Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: wind observations. J Geophys Res 106:25489Google Scholar
  166. Phan T, Frey HU, Frey S, Peticolas L, Fuselier S, Carlson C, Rème H, Bosqued J-M, Balogh A, Dunlop M, Kistler L, Mouikis C, Dandouras I, Sauvaud J-A, Mende S, J McFadden, Parks G, Moebius E, Klecker B, Paschmann G, Fujimoto M, Petrinec S, Marcucci MF, Korth A, Lundin R (2003) Simultaneous cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys Res Lett 30:1509. doi:10.1029/2003GL016885Google Scholar
  167. Phan TD, Dunlop MW, Paschmann G, Klecker B, Bosqued JM, Rème H, Balogh A, Twitty C, Mozer FS, Carlson CW, Mouikis C, Kistler LM (2004) Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions. Ann Geophys 22:2355–2367Google Scholar
  168. Phan TD, Escoubet CP, Rezeau L, Treumann RA, Vaivads A, Paschmann G, Fuselier SA, Attié D, Rogers B, Sonnerup BUÖ (2005) Magnetopause processes. Space Sci Rev 118(1–4):367–424Google Scholar
  169. Phan TD et al (2006) A magnetic x-line extending more than 390 Earth radii in the solar wind. Nature 439:175Google Scholar
  170. Pitout F, Newell PT, Buchert SC (2002) Simultaneous high- and low-latitude reconnection: ESR and DMSP observations. Ann Geophys 20(9):1311–1320Google Scholar
  171. Priest ER, Forbes TG (1992) Does fast magnetic reconnection exist? J Geophys Res 97:16757–16772Google Scholar
  172. Provan G, Yeoman TK (1999) Statistical observations of the MLT, latitude and size of pulsed ionospheric flows with the CUTLASS Finland radar. Ann Geophys 17:855–867Google Scholar
  173. Pu Z, Yei M, Liu Z (1990) Generation of vortex-induced tearing mode instability at the magnetopause. J Geophys Res 95(A7):10559–10566Google Scholar
  174. Pu ZY et al (2007) Global view of dayside magnetic reconnection with the dusk-dawn IMF orientation: a statistical study for Double Star and Cluster data. Geophys Res Lett 34:L20101. doi:10.1029/2007GL030336Google Scholar
  175. Raeder J (2006) Flux transfer events: 1. Generation mechanism for strong southward IMF. Ann Geophys 24:381–392Google Scholar
  176. Raeder J, Berchem J, Ashour-Abdalla M et al (1997) Boundary layer formation in the magnetotail: geotail observations and comparisons with a global MHD simulation. Geophys Res Lett 24(8):951–954Google Scholar
  177. Rijnbeek RP, Cowley SWH, Southwood DJ, Russell CT (1984) A survey of dayside flux transfer events observed by Isee 1 and 2 magnetometers. J Geophys Res 89(A2):786–800Google Scholar
  178. Rosenqvist L, Vaivads A, Retino A, Phan T, Opgenoorth HJ, Dandouras I, Buchert S (2008) Modulated reconnection rate and energy conversion at the magnetopause under steady IMF conditions. Geophys Res Lett 35:L08104. doi:10.1029/2007GL032868Google Scholar
  179. Roth M (1992) On impulsive penetration of solar wind plasmoids into the geomagnetic field. Planet Space Sci 40:193Google Scholar
  180. Russell CT, Elphic RC (1978) Initial ISEE magnetometer results: magnetopause observations. Space Sci Rev 22:681–715Google Scholar
  181. Safrankova J, Nemecek Z, Sibeck DG, Prech L, Merka J, Santolik O (1998) Two-point observation of high-latitude reconnection. Geophys Res Lett 25:4301–4304Google Scholar
  182. Safrankova J, Nemecek Z, Prech L, Simunek J, Sibeck D, Sauvaud J-A (2007) Variations of the flank LLBL thickness as response to the solar wind dynamic pressure and IMF orientation. J Geophys Res 112:A07201. doi:10.1029/2006JA011889Google Scholar
  183. Sandholt PE, Deehr CS, Egeland A et al (1986) Signatures in the dayside aurora of plasma transfer from the magnetosheath. J Geophys Res 91:10063Google Scholar
  184. Sandholt PE, Farrugia CJ, Cowley SWH, Denig WF (1999) Capture of magnetosheath plasma by the magnetosphere during northward IMF. Geophys Res Lett 26:2833Google Scholar
  185. Sauvaud J-A et al (2001) Intermittent thermal plasma acceleration linked to sporadic motions of the magnetopause, first Cluster results. Ann Geophys 19:1523Google Scholar
  186. Scholer M (1995) Models of flux transfer events. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph series, vol 90. AGU, Washington, DC, pp 235–245Google Scholar
  187. Scholer M, Treumann RA (1997) The low latitude boundary layer at the flanks of the magnetopause. Space Sci Rev 80(1–2):341–367Google Scholar
  188. Scurry L, Russell CT (1991) Proxy studies of energy transfer to the magnetosphere. J Geophys Res 96(A6):9541–9548Google Scholar
  189. Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D 12(1–3):3–18Google Scholar
  190. Shi QQ, Shen C, Pu ZY, Dunlop MW, Zong Q-G, Zhang H, Xiao CJ, Liu ZX, Balogh A (2005) Dimensional analysis of observed structures using multipoint magnetic field measurements: application to Cluster. Geophys Res Lett 32:L12105. doi:10.1029/2005GL022454Google Scholar
  191. Sibeck DG (2009) Concerning the occurrence pattern of flux transfer events on the dayside magnetopause. Ann Geophys 27(2):895–903Google Scholar
  192. Sibeck DG, Lin RQ (2010) Concerning the motion of flux transfer events generated by component reconnection across the dayside magnetopause. J Geophys Res 115:A04209. doi:10.1029/2009JA014677Google Scholar
  193. Sibeck DG et al (1999) Chapter 5: plasma transfer processes at the magnetopause. Space Sci Rev 88(1–2):207–283Google Scholar
  194. Sibeck DG et al (2008) Crater FTEs: simulation results and THEMIS observations. Geophys Res Lett 35:L17S06. doi:10.1029/2008GL033568Google Scholar
  195. Siscoe G, Crooker N (1974) A theoretical relation between Dst and the solar wind merging electric field. Geophys Res Lett 1(1):17–19Google Scholar
  196. Smets R, Belmont G, Delcourt D, Rezeau L (2007) Diffusion at the Earth magnetopause: enhancement by Kelvin-Helmholtz instability. Ann Geophys 25:271–282Google Scholar
  197. Song P, Russell CT (1992) Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res 97(A2):1411–1420Google Scholar
  198. Song P, Sonnerup BUÖ, Thomsen MF (1995) Physics of the magnetopause. Geophysical monograph series, vol 90Google Scholar
  199. Sonnerup BUÖ (1974) The reconnecting magnetopause. In: McCormac BM, Reidel D (eds) Magnetospheric physics. Norwell, MA, p 23Google Scholar
  200. Sonnerup BUÖ, Cahill LJ (1967) Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res 72:171Google Scholar
  201. Sonnerup BUÖ, Guo M (1996) Magnetopause transects. Geophys Res Lett 23:3679–3682Google Scholar
  202. Sonnerup BUÖ, Scheible M (1998) Minimum and maximum variance analysis. In: Multi-spacecraft analysis methods, Int. Space Sci. Inst. Scientific Report Book, p 185Google Scholar
  203. Sonnerup BUÖ, Hasegawa H (2005) Orientation and motion of two-dimensional structures in a space plasma. J Geophys Res 110:A06208. doi:10.1029/2004JA010853Google Scholar
  204. Sonnerup BUÖ, Paschmann G, Papamastorakis I, Sckopke N, Haerendel G, Bame SJ, Asbridge JR, Gosling JT, Russell CT (1981) Evidence for magnetic field reconnection at the Earth’s magnetopause. J Geophys Res 86(15):10049–10067Google Scholar
  205. Sonnerup BUÖ, Papamastorakis I, Paschmann G, Luehr H (1987) Magnetopause properties from AMPTE/IRM observations of the convection electric field – method development. J Geophys Res 92:12137Google Scholar
  206. Sonnerup BUÖ, Paschmann G, Phan T-D (1995) Fluid aspects of reconnection at the magnetopause: in situ observations. In: Song P, Sonnerup BUÖ, Thomsen MF (eds) Physics of the magnetopause. Geophysical monograph series, vol 90. AGU, Washington, DC, pp 167–180Google Scholar
  207. Sonnerup BUÖ, Hasegawa H, Paschmann G (2004) Anatomy of a flux transfer event seen by Cluster. Geophys Res Lett 31:L11803. doi:10.1029/2004GL020134Google Scholar
  208. Sonnerup BUÖ, Hasegawa H, Teh W-L, Hau L-N (2006) Grad-Shafranov reconstruction: an overview. J Geophys Res 111:A09204. doi:10.1029/2006JA011717Google Scholar
  209. Southwood DJ (1968) The hydrodynamic stability of the magnetospheric boundary. Planet Space Sci 16:587Google Scholar
  210. Southwood DJ (1979) Magnetopause Kelvin-Helmholtz instability. In: Proceedings of magnetospheric boundary layers conference, ESA SP-148, pp 357–364Google Scholar
  211. Spreiter JR, Summers AL, Alksne AY (1966) Hydromagnetic flow around the magnetosphere. Planet Space Sci 14(3):223–253Google Scholar
  212. Su YJ, Borovsky JE, Thomsen MF, Elphic RC, McComas DJ (2000) Plasmaspheric material at the reconnecting magnetopause. J Geophys Res 105:7591Google Scholar
  213. Sweet PA (1958) The neutral point theory of solar flares. IAU Symp 6:123Google Scholar
  214. Swisdak M, Drake JF (2007) Orientation of the reconnection X-line. Geophys Res Lett 34:L11106. doi:10.1029/2007GL029815Google Scholar
  215. Taylor MGGT, Lavraud B (2008) Observation of three distinct ion populations at the Kelvin-Helmholtz-unstable magnetopause. Ann Geophys 26(6):1559–1566Google Scholar
  216. Taylor MGGT et al (2008) The plasma sheet and boundary layers under northward IMF: a multi-point and multi-instrument perspective. Adv Space Res 41(10):1619–1629Google Scholar
  217. Terasawa T, Fujimoto M, Mukai T, Shinohara I, Saito Y, Yamamoto T, Machida S, Kokubun S, Lazarus AJ, Steinberg JT, Lepping RP (1997) Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophys Res Lett 24:935Google Scholar
  218. Thomas VA, Winske D (1993) Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause. J Geophys Res 98:11425Google Scholar
  219. Trattner KJ, Fuselier SA, Peterson WK, Sauvaud JA, Stenuit H, Dubouloz N, Kovrazhkin RA (1999) On spatial and temporal structures in the cusp. J Geophys Res 104:28411Google Scholar
  220. Trattner KJ, Fuselier SA, Peterson WK, Boehm M, Klumpar D, Carlson CW, Yeoman TK (2002) Temporal versus spatial interpretation of cusp ion structures observed by two spacecraft. J Geophys Res 107(A10):1287. doi:10.1029/2001JA000181Google Scholar
  221. Trattner KJ, Fuselier SA, Yeoman TK, Korth A, Fraenz M, Mouikis C, Kucharek H, Kistler LM, Escoubet CP, Rème H, Dandouras I, Sauvaud JA, Bosqued JM, Klecker B, Carlson C, Phan T, McFadden JP, Amata E, Eliasson L (2003) Cusp structures: combining multi-spacecraft observations with ground-based observations. Ann Geophys 21:2031–2041Google Scholar
  222. Trattner KJ, Mulcock JS, Petrinec SM, Fuselier SA (2007a) Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys Res Lett 34:L03108. doi:10.1029/2006GL028397Google Scholar
  223. Trattner KJ, Mulcock JS, Petrinec SM, Fuselier SA (2007b) Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J Geophys Res 112:A08210. doi:10.1029/2007JA012270Google Scholar
  224. Trenchi L, Marcucci MF, Pallocchia G, Consolini G, Bavassano Cattaneo MB, Di Lellis AM, Rème H, Kistler L, Carr CM, Cao JB (2008) Occurrence of reconnection jets at the dayside magnetopause: double Star observations. J Geophys Res 113:A07S10. doi:10.1029/2007JA012774Google Scholar
  225. Treumann RA (1997) Theory of super-diffusion for the magnetopause. Geophys Res Lett 24:727Google Scholar
  226. Vaivads A et al (2004) Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys Rev Lett 93:105001. doi:10.1103/PhysRevLett.93.105001Google Scholar
  227. Vaivads A, Retinò A, André M (2006) Microphysics of magnetic reconnection. Space Sci Rev 122:19–27. doi:10.1007/s11214-006-7019-3Google Scholar
  228. Wang YL, Elphic RC, Lavraud B, Taylor MGGT, Birn J, Raeder J, Russell CT, Kawano H, Zong Q-G, Zhang H, Zhang XX, Friedel RH (2005) Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from three years of Cluster observations. J Geophys Res 110(A11):A11221. doi:10.1029/2005JA011150Google Scholar
  229. Wang YL, Elphic RC, Lavraud B, Taylor MGGT, Birn J, Russell CT, Raeder J, Kawano H, Zhang XX (2006) The dependence of flux transfer events on solar wind conditions from three years of Cluster observations. J Geophys Res 111(A4):A04224. doi:10.1029/2005JA011342Google Scholar
  230. Wendel DE, Reiff PH (2009) Magnetopause reconnection impact parameters from multiple spacecraft magnetic field measurements. Geophys Res Lett 36:L20108. doi:10.1029/2009GL040228Google Scholar
  231. Wild JA et al (2001) First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Ann Geophys 19:1491Google Scholar
  232. Wing S, Johnson JR, Fujimoto M (2006) Timescale for the formation of the cold-dense plasma sheet: a case study. Geophys Res Lett 33(23):L23106Google Scholar
  233. Wygant JR et al (2005) Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J Geophys Res 110:A09206. doi:10.1029/2004JA010708Google Scholar
  234. Zhang H, Khurana KK, Kivelson MG, Angelopoulos V, Pu ZY, Zong Q-G, Liu J, Zhou X-Z (2008) Modeling a force-free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. J Geophys Res 113:A00C05. doi:10.1029/2008JA013451Google Scholar
  235. Zheng Y, Le G, Slavin JA, Goldstein ML, Cattell C, Balogh A, Lucek EA, Rème H, Eastwood JP, Wilber M, Parks G, Retino A, Fazakerley A (2005) Cluster observation of continuous reconnection at dayside magnetopause in the vicinity of cusp. Ann Geophys 23:2199–2215Google Scholar
  236. Zhou X-Z, Zong Q-G, Pu ZY, Fritz TA, Dunlop MW, Shi QQ, Wang J, Wei Y (2006) Multiple Triangulation Analysis: another approach to determine the orientation of magnetic flux ropes. Ann Geophys 24:1759–1765Google Scholar
  237. Zhou X-Z, Pu ZY, Zong Q-G, Xie L (2007) Energy filter effect for solar wind particle entry to the plasma sheet via flank regions during southward interplanetary magnetic field. J Geophys Res 112:A06233. doi:10.1029/2006JA012180Google Scholar
  238. Zwan BJ, Wolf RA (1976) Depletion of solar wind plasma near a planetary boundary. J Geophys Res 81(10):1636–1648Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Benoit Lavraud
    • 1
    • 2
  • Claire Foullon
    • 3
  • Charles J. Farrugia
    • 4
    • 5
  • Jonathan P. Eastwood
    • 6
  1. 1.Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse (UPS)Toulouse Cedex 4France
  2. 2.Centre National de la Recherche Scientifique, UMRToulouseFrance
  3. 3.Department of PhysicsCentre for Fusion, Space and Astrophysics, University of WarwickCoventryUK
  4. 4.Department of PhysicsUniversity of New HampshireDurhamUSA
  5. 5.Space Science Center, University of New HampshireDurhamUSA
  6. 6.The Blackett Laboratory, Imperial College LondonLondonUK

Personalised recommendations