Clinical Implications

  • Undurti N. Das


It is evident from the preceding chapters that several adult diseases: obesity, insulin resistance, type 2 diabetes mellitus, hypertension, dyslipidemia, coronary heart disease, metabolic syndrome, some cancers, schizophrenia, depression, Alzheimer’s disease, atherosclerosis, aging, osteoporosis, stroke, lupus, rheumatoid arthritis and other autoimmune diseases are all low-grade systemic inflammatory conditions. The enhanced production of pro-inflammatory cytokines, ROS, reactive nitrogen species, pro-inflammatory eicosanoids, a decrease in the cellular anti-oxidants and a simultaneous decrease in the levels of anti-inflammatory cytokines and certain PUFAs and their products such as lipoxins, resolvins, protectins, maresins and nitrolipids seem to occur in all these conditions. As already discussed in the previous chapter, the target tissues/organs are different depending on the underlying condition though low-grade systemic inflammation is common in all these diseases. In certain conditions, such as lupus and rheumatoid arthritis, local inflammatory events seem to be more evident.


Metabolic Syndrome Vagus Nerve Vagus Nerve Stimulation Certolizumab Pegol Ethyl Pyruvate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    Das UN (2001) Is insulin an anti-inflammatory molecule? Nutrition 17:409–413PubMedCrossRefGoogle Scholar
  2. [2]
    Satomi N, Sakurai A, Haranaka K (1985) Relationship of hypoglycemia to tumor necrosis factor production and antitumor activity: role of glucose, insulin, and macrophages. J Natl Cancer Inst 74:1255–1260PubMedGoogle Scholar
  3. [3]
    Fraker DL, Merino MJ, Norton JA (1989) Reversal of the toxic effects of cachectin by concurrent insulin administration. Am J Physiol 256:E725–E731PubMedGoogle Scholar
  4. [4]
    Ottlecz A, Koltai M, Blazso G, Minker E (1978) Contribution to the regulatory role of insulin in inflammation and anaphylaxis. Int Arch Allergy Appl Immunol 56:284–286PubMedCrossRefGoogle Scholar
  5. [5]
    Ottlecz A, Koltai M, Gecse A (1977) Further studies on the antiinflammatory effect of insulin. Agents Actions 7:487–491PubMedCrossRefGoogle Scholar
  6. [6]
    Ottlecz A, Gecse A, Koltai M, West GB (1977) Involvement of the kinin system in the insulin-induced inhibition of carrageenan oedema in rats. Monogr Allergy 12:131–137PubMedGoogle Scholar
  7. [7]
    Boichot E, Sannomiya P, Escofier N et al (1999) Endotoxin-induced acute lung injury in rats. Role of insulin. Pulm Pharmacol Ther 12:285–290PubMedCrossRefGoogle Scholar
  8. [8]
    Jeschke MG, Klein D, Bolder U, Einspanier R (2004) Insulin attenuates the systemic inflammatory response in endotoxemic rats. Endocrinology 145:4084–4093PubMedCrossRefGoogle Scholar
  9. [9]
    Van den Berghe G, Wouters P, Weekers F et al (2001) Intensive insulin therapy in critically ill patients. N Engl J Med 345:1359–1367PubMedCrossRefGoogle Scholar
  10. [10]
    Viardot A, Grey ST, Mackay F, Chisholm D (2007) Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology 148:346–353PubMedCrossRefGoogle Scholar
  11. [11]
    Jeschke MG, Boehning DF, Finnerty CC, Herndon DN (2007) Effect of insulin on the inflammatory and acute phase response after burn injury. Crit Care Med 35(9 Suppl):S519–S523PubMedCrossRefGoogle Scholar
  12. [12]
    Jeschke MG, Klein D, Herndon DN (2004) Insulin treatment improves the systemic inflammatory reaction to severe trauma. Ann Surg 239:553–560PubMedCrossRefGoogle Scholar
  13. [13]
    Ye SD, Zheng M, Zhao LL, Qian Y, Yao XM, Ren A, Li SM, Jing CY (2009) Intensive insulin therapy decreases urinary MCP-1 and ICAM-1 excretions in incipient diabetic nephropathy. Eur J Clin Invest 39:980–985PubMedCrossRefGoogle Scholar
  14. [14]
    Kuboki K, Jiang ZY, Takahara N et al (2000) Regulation of endothelial constitutive nitric oxide gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681PubMedCrossRefGoogle Scholar
  15. [15]
    Kojda G, Harrison D (1999) Interaction between NO and reactive oxygen species: pathophysiological importance in artherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571PubMedCrossRefGoogle Scholar
  16. [16]
    Sakaue S, Nishihira J, Hirokawa J et al (1999) Regulation of macrophage migration inhibitory factor (MIF) expression by glucose and insulin in adipocytes in vitro. Mol Med 5:361–371PubMedGoogle Scholar
  17. [17]
    Waeber G, Calandra T, Roduit R et al (1997) Insulin secretion is regulated by the glucose-dependent production of islet beta cell macrophage inhibitory factor. Proc Natl Acad Sci U S A 94:4782–4787PubMedCrossRefGoogle Scholar
  18. [18]
    Hirokawa J, Sakaue S, Furuya Y et al (1998) Tumor necrosis factor alpha regulates the gene expression of macrophage migration inhibitory factor through tyrosine kinase-dependent pathway in 3T3-L1 adipocytes. J Biochem (Tokyo) 123:733–739CrossRefGoogle Scholar
  19. [19]
    Hotamisligil GS (1999) The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med 245:621–625PubMedCrossRefGoogle Scholar
  20. [20]
    Das UN (2000) Possible beneficial action(s) of glucose-insulin-potassium regimen in acute myocardial infarction and inflammatory conditions: a hypothesis. Diabetologia 43:1081–1082PubMedCrossRefGoogle Scholar
  21. [21]
    Das UN (2001) Can glucose-insulin-potassium regimen suppress inflammatory bowel disease? Med Hypotheses 57:183–185PubMedCrossRefGoogle Scholar
  22. [22]
    Das UN (2001) Hypothesis: can glucose-insulin-potassium regimen in combination with polyunsaturated fatty acids suppress lupus and other inflammatory diseases? Prostaglandins Leukot Essent Fatty Acids 65:109–113PubMedCrossRefGoogle Scholar
  23. [23]
    Li J, Zhang H, Wu F, Nan Y, Guo W, Wang H, Ren J, Das UN, Gao F (2008) Insulin inhibits tumor necrosis factor-α- induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation. Crit Care Med 36:1551–1558PubMedCrossRefGoogle Scholar
  24. [24]
    Das UN (2008) Glucose, insulin, and coronary heart disease. Eur Heart J 29:1075–1076PubMedCrossRefGoogle Scholar
  25. [25]
    Reade MC, Fink MP (2005) Bench-to-bedside review: amelioration of acute renal impairment using ethyl pyruvate. Crit Care 9:556–560PubMedCrossRefGoogle Scholar
  26. [26]
    Sims CA, Wattanasirichaigoon S, Menconi MJ, Ajami AM, Fink MP (2001) Ringer’s ethyl pyruvate solution ameliorates ischemia/reperfusion-induced intestinal mucosal injury in rats. Crit Care Med 29:1513–1518PubMedCrossRefGoogle Scholar
  27. [27]
    Tawadrous ZS, Delude RL, Fink MP (2002) Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock 17:473–477PubMedCrossRefGoogle Scholar
  28. [28]
    Dobsak P, Courdertot-Masuyer C, Zeller M, Vergely C, Laubriet A, Assem M, Eicher JC, Teyssier JR, Wolf JE, Rochetter L (1999) Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia. J Cardiovasc Pharmacol 34:651–659PubMedCrossRefGoogle Scholar
  29. [29]
    Cicalese L, Lee K, Schraut W, Watkins S, Borle A, Stanko R (1999) Pyruvate prevents ischemia-reperfusion mucosal injury of rat small intestine. Am J Surg 171:97–100CrossRefGoogle Scholar
  30. [30]
    Venkataraman R, Kellum JA, Song M, Fink MP (2002) Resuscitation with Ringer’s ethyl pyruvate solution prolongs survival and modulates plasma cytokine and nitrite/nitrate concentrations in a rat model of lipopolysaccharide-induced shock. Shock 18:507–512PubMedCrossRefGoogle Scholar
  31. [31]
    Das UN (2006) Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12:RA79–RA84PubMedGoogle Scholar
  32. [32]
    Das UN (2006) Is pyruvate an endogenous anti-inflammatory molecule? Nutrition 22:965–972PubMedCrossRefGoogle Scholar
  33. [33]
    Das UN (2007) Ethyl pyruvate in sepsis. Adv Sepsis 6:10–15Google Scholar
  34. [34]
    Bennett-Guerrero E, Swaminathan M, Grigore AM, Roach GW, Aberle LG, Johnston JM, Fink MP (2009) A phase II multicenter double-blind placebo-controlled study of ethyl pyruvate in high-risk patients undergoing cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 23:324–329PubMedCrossRefGoogle Scholar
  35. [35]
    Awad AB, Young AL, Fink CS (1996) The effect of unsaturated fatty acids on membrane composition and signal transduction in HT-29 human colon cancer cells. Cancer Lett 108:25–33PubMedCrossRefGoogle Scholar
  36. [36]
    Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639PubMedCrossRefGoogle Scholar
  37. [37]
    Begin ME, Ells G, Das UN, Horrobin DF (1986) Differential killing of human carcinoma cells supplemented with n-3 and n-6 polyunsaturated fatty acids. J Natl Cancer Inst 77:1053–1062PubMedGoogle Scholar
  38. [38]
    Das UN (1990) Gamma-linolenic acid, arachidonic acid and eicosapentaenoic acid as potential anti-cancer drugs. Nutrition 6:429–434PubMedGoogle Scholar
  39. [39]
    Das UN (1991) Tumoricidal action of cis-unsaturated fatty acids and its relationship to free radicals and lipid peroxidation. Cancer Lett 56:235–243PubMedCrossRefGoogle Scholar
  40. [40]
    Madhavi N, Das UN (1994) Effect of n-6 and n-3 fatty acids on the survival of vincristine sensitive and resistant human cervical carcinoma cells in vitro. Cancer Lett 84:31–41PubMedCrossRefGoogle Scholar
  41. [41]
    Das UN, Prasad VSSV, Reddy DR (1995) Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 94:147–155PubMedCrossRefGoogle Scholar
  42. [42]
    Belayev L, Marcheselli VL, Khoutorova L, Rodriguez de Turco EB, Busto R, Ginsberg MD, Bazan NG (2005) Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke 36:118–123PubMedCrossRefGoogle Scholar
  43. [43]
    Berman DR, Mozurkewich E, Liu Y, Barks J (2009) Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol 200:305.e1–305.e6PubMedCrossRefGoogle Scholar
  44. [44]
    Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817PubMedCrossRefGoogle Scholar
  45. [45]
    Das UN (2008) Albumin infusion therapy in stroke, sepsis and the critically ill. Curr Nutr Food Sci 4:217–226CrossRefGoogle Scholar
  46. [46]
    Krishna Mohan I, Das UN (2001) Prevention of chemically-induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition 17:126–151PubMedCrossRefGoogle Scholar
  47. [47]
    Suresh Y, Das UN (2001) Protective action of arachidonic acid against alloxan-induced cytotoxicity and diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 64:37–52PubMedCrossRefGoogle Scholar
  48. [48]
    Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition 19:93–114PubMedCrossRefGoogle Scholar
  49. [49]
    Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition 19:213–228PubMedCrossRefGoogle Scholar
  50. [50]
    Suresh Y, Das UN (2006) Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 74:199–213PubMedCrossRefGoogle Scholar
  51. [51]
    Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, Tian H, Zheng S, Dai Y, Zhao A (2010) Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death. Diabetes 59:471–478PubMedCrossRefGoogle Scholar
  52. [52]
    White PJ, Arita M, Taguchi R, Kang JX, Marette A (2010) Transgenic restoration of long chain {omega}-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high fat-fed mice. Diabetes 59:3066–3073PubMedCrossRefGoogle Scholar
  53. [53]
    Saltiel AR (2010) Fishing out a sensor for anti-inflammatory oils. Cell 142:672–674PubMedCrossRefGoogle Scholar
  54. [54]
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JW (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698PubMedCrossRefGoogle Scholar
  55. [55]
    Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94PubMedCrossRefGoogle Scholar
  56. [56]
    Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima et al (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Science 422:173–176Google Scholar
  57. [57]
    Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462PubMedCrossRefGoogle Scholar
  58. [58]
    Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al-Abed Y, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388PubMedCrossRefGoogle Scholar
  59. [59]
    Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24:316–323PubMedCrossRefGoogle Scholar
  60. [60]
    Westman M, Engström M, Catrina AI, Lampa J (2009) Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol 70:136–140PubMedCrossRefGoogle Scholar
  61. [61]
    Bruchfeld A, Goldstein RS, Chavan S, Patel NB, Rosas-Ballina M, Kohn N, Qureshi AR, Tracey KJ (2010) Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J Intern Med 268:94–101PubMedGoogle Scholar
  62. [62]
    van Maanen MA, Stoof SP, Larosa GJ, Vervoordeldonk MJ, Tak PP (2010) Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Ann Rheum Dis 69:1717–1723PubMedCrossRefGoogle Scholar
  63. [63]
    Daniel PM, Henderson JR (1967) The effect of vagal stimulation on plasma insulin and glucose levels in the baboon. J Physiol 192:317–327PubMedGoogle Scholar
  64. [64]
    Uvnäs-Wallensten K, Nilsson G (1978) A quantitative study of the insulin release induced by vagal stimulation in anesthetized cats. Acta Physiol Scand 102:137–142PubMedCrossRefGoogle Scholar
  65. [65]
    Bergman RN, Miller RE (1973) Direct enhancement of insulin secretion by vagal stimulation of the isolated pancreas. Am J Physiol 225:481–486PubMedGoogle Scholar
  66. [66]
    Uno K, Katagiri H, Yamada T, Ishigaki Y, Ogihara T, Imai J, Hasegawa Y, Gao J, Kaneko K, Iwasaki H, Ishihara H, Sasano H, Inukai K, Mizuguchi H, Asano T, Shiota M, Nakazato M, Oka Y (2006) Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 312:1656–1659PubMedCrossRefGoogle Scholar
  67. [67]
    Gautam D, Han SJ, Duttaroy A, Mears D, Hamdan FF, Li JH, Cui Y, Jeon J, Wess J (2007) Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis. Diabetes Obes Metab 9(Suppl 2):158–169PubMedCrossRefGoogle Scholar
  68. [68]
    Edvell A, Lindstrom P (1998) Vagotomy in young obese hyperglycemic mice: effects on syndrome development and islet proliferation. Am J Physiol 274(6 Pt 1):E1034–E1039PubMedGoogle Scholar
  69. [69]
    Kiba T, Tanaka K, Hoshino M, Misugi K, Inoue S (1996) Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology 110:885–893PubMedCrossRefGoogle Scholar
  70. [70]
    Stubbs M, York DA (1991) Central glucocorticoid regulation of parasympathetic drive to pancreatic B-cells in the obese fa/fa rat. Int J Obes 15:547–553PubMedGoogle Scholar
  71. [71]
    Rohner-Jeanrenaud F, Hochstrasser AC, Jeanrenaud B (1983) Hyperinsulinemia of preobese and obese fa/fa rats is partly vagus nerve mediated. Am J Physiol 244:E317–E322PubMedGoogle Scholar
  72. [72]
    Miller AW, Sims JJ, Canavan A, Hsu T, Ujhelyi MR (1999) Impaired vagal reflex activity in insulin-resistant rats. J Cardiovasc Pharmacol 33:698–702PubMedCrossRefGoogle Scholar
  73. [73]
    Latour MG, Lautt WW (2002) The hepatic vagus nerve in the control of insulin sensitivity in the rat. Auton Neurosci 95:125–130PubMedCrossRefGoogle Scholar
  74. [74]
    Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140:1687–1694PubMedCrossRefGoogle Scholar
  75. [75]
    Follesa P, Biggio F, Gorini G, Caria S, Talani G, Dazzi L, Puligheddu M, Marrosu F, Biggio G (2007) Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res 1179:28–34PubMedCrossRefGoogle Scholar
  76. [76]
    Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, Wiegand SJ, Wong V (1999) Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes 48:588–594PubMedCrossRefGoogle Scholar
  77. [77]
    Yamanaka M, Itakura Y, Inoue T, Tsuchida A, Nakagawa T, Noguchi H, Taiji M (2006) Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55:1286–1292PubMedCrossRefGoogle Scholar
  78. [78]
    Das UN (2010) Obesity: genes, brain, gut, and environment. Nutrition 26:459–473PubMedCrossRefGoogle Scholar
  79. [79]
    Ono M, Itakura Y, Nonomura T, Nakagawa T, Nakayama C, Taiji M, Noguchi H (2000) Intermittent administration of brain-derived neurotrophic factor ameliorates glucose metabolism in obese diabetic mice. Metabolism 49:129–133PubMedCrossRefGoogle Scholar
  80. [80]
    Sala R, Viegi A, Rossi FM, Pizzorusso T, Bonanno G, Raiteri M, Maffei L (1998) Nerve growth factor and brain-derived neurotrophic factor increase neurotransmitter release in the rat visual cortex. Eur J Neurosci 10:2185–2191PubMedCrossRefGoogle Scholar
  81. [81]
    Jobst BC (2010) Electrical stimulation in epilepsy: vagus nerve and brain stimulation. Curr Treat Options Neurol 12:443–453PubMedCrossRefGoogle Scholar
  82. [82]
    Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL (2004) Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation 109:2221–2226PubMedCrossRefGoogle Scholar
  83. [83]
    Wu R, Dong W, Cui X, Zhou M, Simms HH, Ravikumar TS, Wang P (2007) Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 245:480–486PubMedCrossRefGoogle Scholar
  84. [84]
    Wu R, Zhou M, Das P, Dong W, Ji Y, Yang D, Miksa M, Zhang F, Ravikumar TS, Wang P (2007) Ghrelin inhibits sympathetic nervous activity in sepsis. Am J Physiol Endocrinol 293:E1697–E1702CrossRefGoogle Scholar
  85. [85]
    Chorny A, Anderson P, Gonzalez-Rey E, Delgado M (2008) Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol 180:8369–8377PubMedGoogle Scholar
  86. [86]
    Wu R, Dong W, Zhou M, Zhang F, Marini CP, Ravikumar TS, Wang P (2007) Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am J Respir Crit Care Med 176:805–813PubMedCrossRefGoogle Scholar
  87. [87]
    Chang L, Zhao J, Yang J, Zhang Z, Tang C (2003) Therapeutic effects of ghrelin on endotoxic shock in rats. Eur J Pharmacol 473:171–176PubMedCrossRefGoogle Scholar
  88. [88]
    Naidu MRC, Das UN, Kishan A (1992) Intratumoral gamma-linolenic acid therapy of human gliomas. Prostaglandins Leukot Essent Fatty Acids 45:181–184PubMedCrossRefGoogle Scholar
  89. [89]
    Das UN, Prasad VSSV, Reddy DR (1995) Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Lett 94:147–155PubMedCrossRefGoogle Scholar
  90. [90]
    Bakshi A, Mukherjee D, Bakshi A, Banerji AK, Das UN (2003) Gamma-linolenic acid therapy of human gliomas. Nutrition 19:305–309PubMedCrossRefGoogle Scholar
  91. [91]
    Miyake JA, Benadiba M, Colquhoun A (2009) Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids Health Dis 8:8PubMedCrossRefGoogle Scholar
  92. [92]
    Das UN (2007) Gamma-linolenic acid therapy of human glioma-a review of in vitro, in vivo, and clinical studies. Med Sci Monit 13:RA119–RA131PubMedGoogle Scholar
  93. [93]
    Leaver HA, Wharton SB, Bell HS, Leaver-Yap IM, Whittle IR (2002) Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins Leukot Essent Fatty Acids 67:283–292PubMedCrossRefGoogle Scholar
  94. [94]
    Leaver HA, Bell HS, Rizzo MT, Ironside JW, Gregor A, Wharton SB, Whittle IR (2002) Antitumour and pro-apoptotic actions of highly unsaturated fatty acids in glioma. Prostaglandins Leukot Essent Fatty Acids 66:19–29PubMedCrossRefGoogle Scholar
  95. [95]
    Das UN (2002) Abrupt and complete occlusion of tumor-feeding vessels by gamma-linolenic acid. Nutrition 18:662–664PubMedCrossRefGoogle Scholar
  96. [96]
    Das UN (2004) Occlusion of infusion vessels on gamma-linolenic acid infusion. Prostaglandins Leukot Essent Fatty Acids 70:23–32PubMedCrossRefGoogle Scholar
  97. [97]
    Barry JB, Giguere V (2005) Epidermal growth factor-induced signaling in breast cancer cells results in selective target gene activation by orphan nuclear receptor estrogen-related receptor alpha. Cancer Res 65:6120–6129PubMedCrossRefGoogle Scholar
  98. [98]
    Vallbohmer D, Lenz HJ (2005) Epidermal growth factor receptor as a target for chemotherapy. Clin Colorectal Cancer 5(Suppl 1):S19–S27PubMedCrossRefGoogle Scholar
  99. [99]
    Stewart R, Nelson J, Wilson DJ (1989) Epidermal growth factor promotes chick embryonic angiogenesis. Cell Biol Int Rep 13:957–965PubMedCrossRefGoogle Scholar
  100. [100]
    De S, Razorenova O, McCabe NP, O’Toole T, Qin J, Byzova TV (2005) VEGF-integrin interplay controls tumor growth and vascularization. Proc Natl Acad Sci U S A 102:7589–7594PubMedCrossRefGoogle Scholar
  101. [101]
    Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16:179–186PubMedCrossRefGoogle Scholar
  102. [102]
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027PubMedCrossRefGoogle Scholar
  103. [103]
    Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325PubMedGoogle Scholar
  104. [104]
    Li Y, Lu Y, Xing G, Zhu Y, He F (2004) Macrophage migration inhibitory factor directly interacts with hepatopoietin and regulates the proliferation of hepatoma cell. Exp Cell Res 300:379–387PubMedCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.UND Life ScienceShaker HeightsUSA
  2. 2.School of BiotechnologyJawaharlal Nehru Technological UniversityKakinadaIndia

Personalised recommendations