Skip to main content

Adult Diseases and Low-Grade Systemic Inflammation Have Their Origins in the Perinatal Period

  • Chapter
  • First Online:
Molecular Basis of Health and Disease
  • 1374 Accesses

Abstract

It is evident from the discussion in the preceding chapters on various diseases/disorders that low-grade systemic inflammation plays a significant role in the pathobiology of obesity, hypertension, type 2 diabetes mellitus, dyslipidemia, atherosclerosis, coronary heart disease, cancer, aging, Alzheimer’s disease, schizophrenia, depression, dementia and even stroke (though this disease was not discussed in details, in general, it occurs as a result of underlying hypertension, diabetes mellitus, hyperlipidemia and hence, could be considered as a consequence of these diseases rather than as a separate disease entity). The presence of low-grade systemic inflammation as evidenced by increased plasma levels of CRP, IL-6, TNF-α, HMGB-1, MIF, ROS, iNO, and a concomitant decrease in anti-inflammatory cytokines such as IL-4, IL-10, IL-12, TGF-β, and anti-oxidants, and decreased plasma and tissue levels of various PUFAs such as AA, EPA, DHA, GLA, DGLA and their anti-inflammatory products such as lipoxins, resolvins, protectins and maresins may underlie all these diseases. Thus, an imbalance between pro- and anti-inflammatory molecules seems to be a common feature in these diseases. Thus, the molecular events in all these diseases are similar but the target tissues are different. This implies that methods designed to suppress the production of pro-inflammatory molecules and/or increase in the synthesis and secretion of anti-inflammatory molecules could be of benefit in their prevention and management (Fig. 16.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das UN (2011) Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 27:21–25

    PubMed  CAS  Google Scholar 

  2. Barker DJP (ed) (1992) Fetal and infant origins of adult disease. BMJ Publishing, London

    Google Scholar 

  3. Robinson R (2001) The fetal origins of adult disease. BMJ 322:375–376

    PubMed  CAS  Google Scholar 

  4. Das UN (2002) A perinatal strategy for preventing adult disease. The role of polyunsaturated fatty acids. Kluwer Academic, Norwell

    Google Scholar 

  5. Das UN (2010) Metabolic syndrome pathophysiology. The role of essential fatty acids. Wiley-Blackwell, Ames

    Google Scholar 

  6. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Yoshikawa T, Hasty AH, Tamura Y, Osuga J, Okazaki H, Iizuka Y, Takahashi A, Sone H, Gotoda T, Ishibashi S, Yamada N (2002) Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res 43:107–114

    PubMed  CAS  Google Scholar 

  7. Das UN (2006) Essential fatty acids: biochemistry, physiology, and pathology. Biotechnol J 1:420–439

    PubMed  CAS  Google Scholar 

  8. Das UN (2006) Biological significance of essential fatty acids. J Assoc Physicians India 54:309–319

    PubMed  CAS  Google Scholar 

  9. Auestad N, Scott DT, Janowsky JS, Jacobson C, Carroll RE, Montalto MB, Halter R, Qiu W, Jacobs JR, Connor WE, Conner SL, Taylor JA, Neuringer M, Fitzgerald KM, Hall RT (2003) Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 112(3 Pt 1):e177–e183

    Google Scholar 

  10. Fewtrell MS, Morley R, Abbott RA, Singhal A, Isaacs EB, Stephenson T, MacFadyen U, Lucas A (2002) Double-blind, randomized trial of long-chain polyunsaturated fatty acid supplementation in formula fed to preterm infants. Pediatrics 110(1 Pt 1):73–82

    PubMed  Google Scholar 

  11. SanGiovanni JP, Parra-Cabrera S, Colditz GA, Berkey CS, Dwyer JT (2000) Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatrics 105:1292–1298

    PubMed  CAS  Google Scholar 

  12. O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, Connor SL, Fitzgerald K, Groh-Wargo S, Hartmann EE, Jacobs J, Janowsky J, Lucas A, Margeson D, Mena P, Neuringer M, Nesin M, Singer L, Stephenson T, Szabo J, Zemon V, Ross Preterm Lipid Study (2001) Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 108:359–371

    PubMed  Google Scholar 

  13. Boehm G, Borte M, Bohles HJ, Muller H, Kohn G, Moro G (1996) Docosahexaenoic and arachidonic acid content of serum and red blood cell membrane phospholipids of preterm infants fed breast milk, standard formula or formula supplemented with n-3 and n-6 long-chain polyunsaturated fatty acids. Eur J Pediatr 155:410–416

    PubMed  CAS  Google Scholar 

  14. Fewtrell MS, Abbott RA, Kennedy K, Singhal A, Morley R, Caine E, Jamieson C, Cockburn F, Lucas A (2004) Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. J Pediatr 144:471–479

    PubMed  CAS  Google Scholar 

  15. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M (1998) Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352:688–691

    PubMed  CAS  Google Scholar 

  16. Salem N Jr, Wegher B, Mena P, Uauy R (1996) Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci U S A 93:49–54

    PubMed  CAS  Google Scholar 

  17. Farquharson J, Jamieson EC, Abbasi KA, Patrick WJA, Logan RW, Cockburn F (1995) Effect of diet on the fatty acid composition of the major phospholipids of infant cerebral cortex. Arch Dis Child 72:198–203

    PubMed  CAS  Google Scholar 

  18. Ryan AS, Astwood JD, Gautier S, Kuratko CN, Nelson EB, Salem N Jr (2010) Effects of long-chain polyunsaturated fatty acid supplementation on neurodevelopment in childhood: a review of human studies. Prostaglandins Leukot Essent Fatty Acids 82:305–314

    PubMed  CAS  Google Scholar 

  19. Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, Halter R, Qiu W, Jacobs JR, Connor WE, Connor SL, Taylor JA, Neuringer M, Fitzgerald KM, Hall RT (2003) Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 112(3 Pt 1):e177–e183

    PubMed  Google Scholar 

  20. Chang CY, Ke DS, Chen JY (2009) Essential fatty acids and human brain. Acta Neurol Taiwan 18:231–241

    PubMed  Google Scholar 

  21. Makrides M, Smithers LG, Gibson RA (2010) Role of long-chain polyunsaturated fatty acids in neurodevelopment and growth. Nestle Nutr Workshop Ser Pediatr Program 65:123–133

    PubMed  Google Scholar 

  22. Yu N, Martin J-L, Stella N, Magistretti PJ (1993) Arachidonic acid stimulates glucose uptake in cerebral cortical astrocytes. Proc Natl Acad Sci U S A 90:4042–4046

    PubMed  CAS  Google Scholar 

  23. Goetzl EJ, Goldman DW, Naccache PH, Sha’afi RI, Pickett WC (1982) Mediation of leukocyte components of inflammatory reactions by lipoxygenase products of arachidonic acid. Adv Prostaglandin Thromboxane Leukot Res 9:273–282

    PubMed  CAS  Google Scholar 

  24. Fong JC, Chen CC, Liu D, Chai SP, Tu MS, Chu KY (1996) Arachidonic acid stimulates the intrinsic activity of ubiquitous glucose transporter (GLUT1) in 3T3-L1 adipocytes by a protein kinase C-independent mechanism. Cell Signal 8:179–183

    PubMed  CAS  Google Scholar 

  25. Butler M, Huzel N, Barnabé N (1997) Unsaturated fatty acids enhance cell yields and perturb the energy metabolism of an antibody-secreting hybridoma. Biochem J 322(Pt 2):615–623

    PubMed  CAS  Google Scholar 

  26. Garber K (2010) Oncology’s energetic pipeline. Nat Biotechnol 18:888–891

    Google Scholar 

  27. Chiou GY, Fong JC (2005) Synergistic effect of prostaglandin F2alpha and cyclic AMP on glucose transport in 3T3-L1 adipocytes. J Cell Biochem 94:627–634

    PubMed  CAS  Google Scholar 

  28. Ragozzino ME, Unick KE, Gold PE (1996) Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc Natl Acad Sci U S A 93:4693–4698

    PubMed  CAS  Google Scholar 

  29. Das UN (2002) Alcohol consumption and risk of dementia. Lancet 360:490

    PubMed  Google Scholar 

  30. Minami M, Kimura S, Endo T, Hamaue N, Horafuji M, Togashi H, Matsumoto M, Yaoshioka M, Saito H, Watanabe S, Kobayashi T, Okuyama H (1997) Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats. Pharmacol Biochem Behav 58:1123–1129

    PubMed  CAS  Google Scholar 

  31. Hersi AI, Kitaichi K, Srivastava LK, Gaudreau P, Quirion R (2000) Dopamine D-5 receptor modulates hippocampal acetylcholine release. Brain Res Mol Brain Res 76:336–340

    PubMed  CAS  Google Scholar 

  32. Wang G-J, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357

    PubMed  CAS  Google Scholar 

  33. Abott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    Google Scholar 

  34. Venters HD, Dantzer R, Kelley KW et al (2000) A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 23:175–180

    PubMed  CAS  Google Scholar 

  35. Venters HD, Tang Q, Liu Q et al (1999) A new mechanism of neurodegeneration: proinflammatory cytokine inhibits receptor signaling by a survival peptide. Proc Natl Acad Sci U S A 96:9879–9884

    PubMed  CAS  Google Scholar 

  36. Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    PubMed  CAS  Google Scholar 

  37. Wang X, Zhao X, Mao ZY, Wang XM, Liu ZL (2003) Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14:2457–2461

    PubMed  CAS  Google Scholar 

  38. Cao D, Xue R, Xu J, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16:538–546

    PubMed  CAS  Google Scholar 

  39. Hogyes E, Nyakas C, Kiliaan A, Farkas T, Penke B, Luiten PG (2003) Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012

    PubMed  CAS  Google Scholar 

  40. Lonergan PE, Martin DS, Horrobin DF, Lynch MA (2002) Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to gamma-irradiation. J Biol Chem 277:20804–20811

    PubMed  CAS  Google Scholar 

  41. Das UN, Rao KP (2006) Effect of γ-linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot Essent Fatty Acids 74:165–173

    PubMed  CAS  Google Scholar 

  42. Kumar SG, Das UN (1994) Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids 50:331–334

    PubMed  CAS  Google Scholar 

  43. Kumar SG, Das UN, Kumar KV, Tan BKH, Das NP (1992) Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutr Res 12:815–823

    CAS  Google Scholar 

  44. Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271

    PubMed  CAS  Google Scholar 

  45. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    PubMed  CAS  Google Scholar 

  46. Das UN (1994) Beneficial effect of eicosapentaenoic and docosahexaenoic acids in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids 51:207–213

    PubMed  CAS  Google Scholar 

  47. Satomi N, Sakurai A, Haranaka K (1985) Relationship of hypoglycemia to tumor necrosis factor production and antitumor activity: role of glucose, insulin and macrophages. J Natl Cancer Inst 74:1255–1260

    PubMed  CAS  Google Scholar 

  48. Boichot E, Sannomiya P, Escofier N et al (1999) Endotoxin-induced acute lung injury in rats: role of insulin. Pulm Pharmacol Ther 12:285–290

    PubMed  CAS  Google Scholar 

  49. Guidot DM, Hybertson BM, Kitlowski RP, Repine JE (1996) Inhaled nitric oxide prevents IL-1 induced neutrophil accumulation and associated acute edema in isolated rats lungs. Am J Physiol 271:L225–L229

    PubMed  CAS  Google Scholar 

  50. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition 19:213–228

    PubMed  CAS  Google Scholar 

  51. Vecchione C, Aretini A, Maffei A, Marino G, Selvetella G, Poulet R, Trimarco V, Frati G, Lembo G (2003) Cooperation between insulin and leptin in the modulation of vascular tone. Hypertension 42:166–170

    PubMed  CAS  Google Scholar 

  52. Nilsson L, Sara VR, Norberg A (1988) Insulin-like growth factor 1 stimulates the release of acetylcholine from rat cortical slices. Neurosci Lett 88:221–226

    PubMed  CAS  Google Scholar 

  53. Napoli I, Blusztajn JK, Mellott TJ (2008) Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res 1237:124–135

    PubMed  CAS  Google Scholar 

  54. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    PubMed  CAS  Google Scholar 

  55. Xu Z, Tong C, Eisenach JC (1996) Acetylcholine stimulates the release of nitric oxide from rat spinal cord. Anesthesiology 85:107–111

    PubMed  CAS  Google Scholar 

  56. Ponnala S, Rao KP, Chaudhury JR, Ahmed J, Rama Rao B, Kanjilal S, Hasan Q, Das UN (2009) Effect of polyunsaturated fatty acids on diphenyl hydantoin-induced genetic damage in vitro and in vivo. Prostaglandins Leukot Essent Fatty Acids 80:43–50

    PubMed  CAS  Google Scholar 

  57. Das UN, Ramadevi G, Rao KP, Rao MS (1985) Prostaglandins and their precursors can modify genetic damage-induced by gamma-radiation and benzo(a)pyrene. Prostaglandins 29:911–920

    PubMed  CAS  Google Scholar 

  58. Krishna Mohan I, Das UN (2001) Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition 17:126–151

    PubMed  CAS  Google Scholar 

  59. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus: effect of omega-6 fatty acids. Nutrition 19:93–114

    PubMed  CAS  Google Scholar 

  60. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically induced diabetes mellitus. Effect of omega-3 fatty acids. Nutrition 19:213–228

    PubMed  CAS  Google Scholar 

  61. Suresh Y, Das UN (2001) Protective action of arachidonic acid against alloxan-induced cytotoxicity and diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 64:37–52

    PubMed  CAS  Google Scholar 

  62. Ferrari D, Cysneiros RM, Scorza CA, Arida RM, Cavalheiro EA, de Almeida AC, Scorza FA (2008) Neuroprotective activity of omega-3 fatty acids against epilepsy-induced hippocampal damage: quantification with immunohistochemical for calcium-binding proteins. Epilepsy Behav 13:36–42

    PubMed  Google Scholar 

  63. Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37

    PubMed  Google Scholar 

  64. Belayev L, Khoutorova L, Atkins KD, Bazan NG (2009) Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 40:3121–3126

    PubMed  CAS  Google Scholar 

  65. Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–S405

    PubMed  Google Scholar 

  66. Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, Chuang YH, Liao SL, Raung SL, Wu CW, Chiang AN, Chen CJ (2009) Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem 20:715–725

    PubMed  CAS  Google Scholar 

  67. Cao DH, Xu JF, Xue RH, Zheng WF, Liu ZL (2004) Protective effect of chronic ethyl docosahexaenoate administration on brain injury in ischemic gerbils. Pharmacol Biochem Behav 79:651–659

    PubMed  CAS  Google Scholar 

  68. Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166

    PubMed  CAS  Google Scholar 

  69. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    PubMed  CAS  Google Scholar 

  70. Gleissman H, Yang R, Martinod K, Lindskog M, Serhan CN, Johnsen JI, Kogner P (2010) Docosahexaenoic acid metabolome in neural tumors: identification of cytotoxic intermediates. FASEB J 24:906–915

    PubMed  CAS  Google Scholar 

  71. Borkman M, Stolien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV (1993) The relation between insulin sensitivity and the fatty acid composition of skeletal muscle phospholipids. N Engl J Med 328:238–244

    PubMed  CAS  Google Scholar 

  72. Das UN (2005) A defect in the activity of Δ6 and Δ5 desaturases may be a factor predisposing to the development of insulin resistance syndrome. Prostaglandins Leukot Essent Fatty Acids 72:343–350

    PubMed  CAS  Google Scholar 

  73. Ginsberg BH, Jabour J, Spector AA (1982) Effect of alterations in membrane lipid unsaturation on the properties of the insulin receptor of Ehrlich ascites cells. Biochim Biophys Acta 690:157–164

    PubMed  CAS  Google Scholar 

  74. Somova L, Moodley K, Channa ML, Nadar A (1999) Dose-dependent effect of dietary fish-oil (n-3) polyunsaturated fatty acids on in vivo insulin sensitivity in rat. Methods Find Exp Clin Pharmacol 21:275–278

    PubMed  CAS  Google Scholar 

  75. Huang Y-J, Fang VS, Chou Y-C, Kwok C-F, Ho L-T (1997) Amelioration of insulin resistance and hypertension in a fructose-fed rat model with fish oil supplementation. Metabolism 46:1252–1258

    PubMed  CAS  Google Scholar 

  76. Mori Y, Murakawa Y, Katoh S, Hata S, Yokoyama J, Tajima N, Ikeda Y, Nobukata H, Ishikawa T, Shibutani Y (1997) Influence of highly purified eicosapentaenoic acid ethyl ester on insulin resistance in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous non-insulin dependent diabetes mellitus. Metabolism 46:1458–1464

    PubMed  CAS  Google Scholar 

  77. Nobukata H, Ishikawa T, Obata M, Shibutani Y (2000) Long-term administration of highly purified eicosapenatenoic acid ethyl ester prevents diabetes and abnormalities of blood coagulation in male WBN/Kob rats. Metabolism 49:912–919

    PubMed  CAS  Google Scholar 

  78. Demcakova E, Sebokova E, Ukropec J, Gasperikova D, Klimes I (2001) Delta-6 desaturase activity and gene expression, tissue fatty acid profile and glucose turnover rate in hereditary hypertriglyceridemic rats. Endocrinol Regul 35:179–186

    CAS  Google Scholar 

  79. Gasperikova D, Demcakova E, Ukropec J, Klimes I, Sebokova E (2002) Insulin resistance in the hereditary hypertriglyceridemic rat is associated with an impairment of delta-6 desaturase expression in liver. Ann N Y Acad Sci 967:446–453

    PubMed  CAS  Google Scholar 

  80. Simoncikova P, Wein S, Gasperikova D, Ukropec J, Certik M, Klimes I, Sebokova E (2002) Comparison of the extrapancreatic action of gamma-linolenic acid and n-3 PUFAs in the high fat diet-induced insulin resistance. Endocr Regul 36:143–149

    PubMed  CAS  Google Scholar 

  81. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125

    PubMed  CAS  Google Scholar 

  82. Hajnal A, Pothos EN, Lenard L, Hoebel BG (1998) Effects of feeding and insulin on extracellular acetylcholine in the amygdala of freely moving rats. Brain Res 785:41–48

    PubMed  CAS  Google Scholar 

  83. Wang G-J, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357

    PubMed  CAS  Google Scholar 

  84. Li J, Zhang H, Wu F, Nan Y, Ma H, Guo W, Wang H, Ren J, Das UN, Gao F (2008) Insulin inhibits tumor necrosis factor-alpha induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation. Crit Care Med 36:1551–1558

    PubMed  CAS  Google Scholar 

  85. Das UN (2000) Possible beneficial action(s) of glucose-insulin-potassium regimen in acute myocardial infarction and inflammatory conditions: a hypothesis. Diabetologia 43:1081–1082

    PubMed  CAS  Google Scholar 

  86. Das UN (2001) Is insulin an anti-inflammatory molecule? Nutrition 17:409–413

    PubMed  CAS  Google Scholar 

  87. Das UN (2001) Can glucose-insulin-potassium regimen suppress inflammatory bowel disease? Med Hypotheses 57:183–185

    PubMed  CAS  Google Scholar 

  88. Das UN (2001) Hypothesis: can glucose-insulin-potassium regimen in combination with polyunsaturated fatty acids suppress lupus and other inflammatory diseases? Prostaglandins Leukot Essent Fatty Acids 65:109–113

    PubMed  CAS  Google Scholar 

  89. Das UN (2002) Insulin and the critically ill. Crit Care 6:262–263

    PubMed  Google Scholar 

  90. Das UN (2002) Is insulin an endogenous cardioprotector? Crit Care 6:389–393

    PubMed  Google Scholar 

  91. Futerman AH, Banker GA (1996) The economics of neurite outgrowth: the addition of new membrane to growing axons. Trends Neurosci 19:144–149

    PubMed  CAS  Google Scholar 

  92. Negre-Aminou P, Nemenoff RA, Wood MR, de la Houssaye BA, Pfenninger KH (1996) Characterization of phospholipase A2 activity enriched in the nerve growth cone. J Neurochem 67:2599–2608

    PubMed  CAS  Google Scholar 

  93. Hornfelt M, Ekstrom PA, Edstrom A (1999) Involvement of axonal phospholipase A2 activity in the outgrowth of adult mouse sensory axons in vitro. Neuroscience 91:1539–1547

    PubMed  CAS  Google Scholar 

  94. Kelly RB (1999) Deconstructing membrane traffic. Trends Cell Biol 9:M29–M33

    PubMed  CAS  Google Scholar 

  95. Darios F, Davletov B (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440:813–817

    PubMed  CAS  Google Scholar 

  96. Rickman C, Davletov B (2005) Arachidonic acid allows SNARE complex formation in the presence of Munc18. Chem Biol 12:545–553

    PubMed  CAS  Google Scholar 

  97. van der Wees J, Schilthuis JG, Koster CH, Diesveld-Schipper H, Folkers GE, van der Saag PT, Dawson MI, Shudo K, van der Burg B, Durston AJ (1998) Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain. Development 125:545–556

    PubMed  CAS  Google Scholar 

  98. Mata de Urquiza A, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144

    CAS  Google Scholar 

  99. Fan Y-Y, Spencer TE, Wang N, Moyer MP, Chapkin RS (2003) Chemopreventive n-3 fatty acids activate RXRα in colonocytes. Carcinogenesis 24:1541–1548

    PubMed  CAS  Google Scholar 

  100. Lengqvist J, Mata de Urquiza, Bergman A-C, Willson TM, Sjovall J, Perlmann T, Griffiths W (2004) Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol Cell Proteomics 3:692–703

    PubMed  CAS  Google Scholar 

  101. DeWille JW, Farmer SJ (1992) Postnatal dietary fat influences mRNAS involved in myelination. Dev Neurosci 14:61–68

    PubMed  CAS  Google Scholar 

  102. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    PubMed  CAS  Google Scholar 

  103. Mohri I, Eguchi N, Suzuki K, Urade Y, Taniike M (2003) Hematopoietic prostaglandin D synthase is expressed in microglia in the developing postnatal mouse brain. Glia 42:263–274

    PubMed  Google Scholar 

  104. Das UN (2009) Albumin and lipid enriched albumin for the critically ill. J Assoc Physicians India 57:53–58

    PubMed  CAS  Google Scholar 

  105. Velasco A, Tabernero A, Medina JM (2003) Role of oleic acid as a neurotrophic factor is supported in vivo by the expression of GAP-43 subsequent to the activation of SREBP-1 and the up-regulation of stearoyl-CoA desaturase during postnatal development of the brain. Brain Res 977:103–111

    PubMed  CAS  Google Scholar 

  106. Yavin E (2006) Versatile roles of docosahexaenoic acid in the prenatal brain: from pro- and anti-oxidant features to regulation of gene expression. Prostaglandins Leukot Essent Fatty Acids 75:203–211

    PubMed  CAS  Google Scholar 

  107. Kuperstein F, Eilam R, Yavin E (2008) Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency. J Neurochem 106:662–671

    PubMed  CAS  Google Scholar 

  108. Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N Jr, Yavin E (2005) Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem 95:1550–1562

    PubMed  CAS  Google Scholar 

  109. Sinha RA, Khare P, Rai A, Maurya SK, Pathak A, Mohan V, Nagar GK, Mudiam MK, Godbole MM, Bandyopadhyay S (2009) Anti-apoptotic role of omega-3-fatty acids in developing brain: perinatal hypothyroid rat cerebellum as apoptotic model. Int J Dev Neurosci 27:377–383

    PubMed  CAS  Google Scholar 

  110. Monroig O, Rotllant J, Sánchez E, Cerdá-Reverter JM, Tocher DR (2009) Expression of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis genes during zebrafish Danio rerio early embryogenesis. Biochim Biophys Acta 1791:1093–1101

    PubMed  CAS  Google Scholar 

  111. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, Halver JE, Puskas LG (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101:10931–10936

    PubMed  CAS  Google Scholar 

  112. Kitajka K, Puskas LG, Zvara A, Hackler L, Barcelo-Coblijn G, Yeo YK, Farkas T (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A 99:2619–2624

    PubMed  CAS  Google Scholar 

  113. Barcelo-Coblijn G, Hogyes E, Kitajka LG, Zvara A, Hackler L Jr, Nyakas C, Penke Z, Farkas T (2003) Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci U S A 100:11321–11326

    PubMed  CAS  Google Scholar 

  114. Puskas LG, Kitajka K, Nyakas C, Barcelo-Coblijn G, Farkas T (2003) Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc Natl Acad Sci U S A 100:1580–1585

    PubMed  CAS  Google Scholar 

  115. Galvin JE, Schuck TM, Lee VM, Trojanowski JQ (2001) Differential expression and distribution of alpha-, beta-, and gamma-synuclein in the developing human substantia nigra. Exp Neurol 168:347–355

    PubMed  CAS  Google Scholar 

  116. Babcock TA, Helton WS, Anwar KN, Zhao YY, Espat NJ (2004) Synergistic anti-inflammatory activity of omega-3 lipid and rofecoxib pretreatment on macrophage proinflammatory cytokine production occurs via divergent NF-kappaB activation. JPEN J Parenter Enteral Nutr 28:232–239

    PubMed  CAS  Google Scholar 

  117. Gronert K, Gewirtz A, Madara JL, Serhan CN (1998) Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. J Exp Med 187:1285–1294

    PubMed  CAS  Google Scholar 

  118. Hinz B, Brune K, Pahl A (2003) 15-Deoxy-Delta(12,14)-prostaglandin J2 inhibits the expression of proinflammatory genes in human blood monocytes via a PPAR-gamma-independent mechanism. Biochem Biophys Res Commun 302:415–420

    PubMed  CAS  Google Scholar 

  119. Berger A, Mutch DM, German JB, Roberts MA (2002) Dietary effects of arachidonate-rich fungal oil and fish oil on murine hepatic and hippocampal gene expression. Lipids Health Dis 1:2

    PubMed  Google Scholar 

  120. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS, Czura CJ, Miller EJ, Al-Abed Y, Tracey KJ, Pavlov VA (2008) Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 14:567–574

    PubMed  CAS  Google Scholar 

  121. Hamano R, Takahashi HK, Iwagaki H, Yoshino T, Nishibori M, Tanaka N (2006) Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26:358–364

    PubMed  CAS  Google Scholar 

  122. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146:116–123

    PubMed  CAS  Google Scholar 

  123. Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ (2000) Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 85:141–147

    PubMed  CAS  Google Scholar 

  124. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    PubMed  CAS  Google Scholar 

  125. Flier MA, Rittirsch D, Nadeau BA et al (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–726

    Google Scholar 

  126. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-α. Nature 440:1054–1059

    PubMed  CAS  Google Scholar 

  127. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFα. Science 295:2282–2285

    PubMed  CAS  Google Scholar 

  128. Hiramoto T, Chida Y, Sonoda J, Yoshihara K, Sudo N, Kubo C (2008) The hepatic vagus nerve attenuates Fas-induced apoptosis in the mouse liver via alpha7 nicotinic acetylcholine receptor. Gastroenterology 134:2122–2131

    PubMed  Google Scholar 

  129. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    PubMed  CAS  Google Scholar 

  130. Barinaga M (1997) Researchers find signals that guide young brain neurons. Science 278:385–386

    PubMed  CAS  Google Scholar 

  131. Gage FH (1997) Mammalian neural stem cells. Science 287:1433–1438

    Google Scholar 

  132. Penninger JM, Woodgett J (2001) PTEN—coupling tumor suppression to stem cells? Science 294:2116–2118

    PubMed  CAS  Google Scholar 

  133. Colombani J, Bianchini L, Layalle S, Pondeville E, Dauphin-Villemant C, Antoniewski C, Carre C, Noselli S, Leopold P (2005) Antagonistic actions of ecdysone and insulins determine final size in Drosophila. Science 310:667–670

    PubMed  CAS  Google Scholar 

  134. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    PubMed  CAS  Google Scholar 

  135. Chenn A, Zhang YA, Chang BT, McConnell SK (1998) Intrinsic polarity of mammalian neuroepithelial cells. Mol Cell Neurosci 11:183–193

    PubMed  CAS  Google Scholar 

  136. Lien W-H, Klezovitch O, Fernandez TE, Delrow J, Vasioukhin V (2006) αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311:1609–1611

    PubMed  CAS  Google Scholar 

  137. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS (2005) Prostaglandin E2 promotes colon cancer growth through a Gs-axin-β-catenin signaling axis. Science 310:1504–1510

    PubMed  CAS  Google Scholar 

  138. Cai J, Jiang WG, Mansel RE (1999) Inhibition of the expression of VE-cadherin/catenin complex by gamma linolenic acid in human vascular endothelial cells, and its impact on angiogenesis. Biochem Biophys Res Commun 258:113–118

    PubMed  CAS  Google Scholar 

  139. Jiang WG, Hiscox S, Horrobin DF, Hallett MB, Mansel RE, Puntis MC (1995) Expression of catenins in human cancer cells and its regulation by n-6 polyunsaturated fatty acids. Anticancer Res 15:2569–2573

    PubMed  CAS  Google Scholar 

  140. Carayol N, Vachier I, Campbell A, Crampette L, Bousquet J, Godard P, Chanez P (2002) Regulation of E-cadherin expression by dexamethasone and tumour necrosis factor-alpha in nasal epithelium. Eur Respir J 20:1430–1436

    PubMed  CAS  Google Scholar 

  141. Lam TKT, Gutierrez-Juarez R, Pocai A, Rossetti L (2005) Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309:943–947

    PubMed  CAS  Google Scholar 

  142. Woods SC, McKay LD (1978) Intraventricular alloxan eliminates feeding elicited by 2-deoxyglucose. Science 202:1209–1211

    PubMed  CAS  Google Scholar 

  143. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505

    PubMed  CAS  Google Scholar 

  144. Rossetti L, Shulman GI, Zawalich W, Defronzo RA (1987) Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest 80:1037–1044

    PubMed  CAS  Google Scholar 

  145. Mevorach M, Giacca A, Aharon Y, Hawkins M, Shamoon H, Rossetti L (1998) Regulation of endogenous glucose production by glucose per se is impaired in type 2 diabetes mellitus. J Clin Invest 102:744–753

    PubMed  CAS  Google Scholar 

  146. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A (1998) Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J 17:1371–1384

    PubMed  CAS  Google Scholar 

  147. Itoh K, Krupnik VE, Sokol SY (1998) Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin. Curr Biol 8:591–594

    PubMed  CAS  Google Scholar 

  148. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    PubMed  CAS  Google Scholar 

  149. Fagotto F, Gluck U, Gumbiner BM (1998) Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol 8:181–190

    PubMed  CAS  Google Scholar 

  150. Yost C, Farr GH III, Pierce SB, Ferke DM, Chen MM, Kimerlman D (1998) GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93:1031–1041

    PubMed  CAS  Google Scholar 

  151. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370

    PubMed  CAS  Google Scholar 

  152. Carron C, Pascal A, Djiane A, Boucaut J-C, Shi D-L, Umbhauer M (2003) Frizzled receptor dimerization is sufficient to activate the Wnt/β-catenin pathway. J Cell Sci 116:2541–2550

    PubMed  CAS  Google Scholar 

  153. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of β-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100:4610–4615

    PubMed  CAS  Google Scholar 

  154. Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115

    Google Scholar 

  155. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, de Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    PubMed  CAS  Google Scholar 

  156. He TC, Chan TA, Vogelstein B, Kinzler KW (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99:335–345

    PubMed  CAS  Google Scholar 

  157. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Bez-Ze’ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527

    PubMed  CAS  Google Scholar 

  158. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    PubMed  CAS  Google Scholar 

  159. Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AMC (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59:1572–1577

    PubMed  CAS  Google Scholar 

  160. Howe LR, Crawford HC, Subbaramaiah K, Hassell JA, Dannenberg AJ, Brown AMC (2001) PEA3 is up-regulated in response to Wnt1 and activates the expression of cyclooxygenase-2. J Biol Chem 276:20108–20115

    PubMed  CAS  Google Scholar 

  161. Haertel-Wiesmann M, Liang Y, Fantl WJ, Williams LT (2000) Regulation of cyclooxygenase-2 and periostin by Wnt-3 in mouse mammary epithelial cells. J Biol Chem 275:32046–32051

    PubMed  CAS  Google Scholar 

  162. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3:397–403

    PubMed  CAS  Google Scholar 

  163. Nakamura T, Sano M, Songyang Z, Schneider MD (2003) A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 100:5834–5839

    PubMed  CAS  Google Scholar 

  164. Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of beta-catenin stability: reconsitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5:523–532

    PubMed  CAS  Google Scholar 

  165. Hardt SE, Sadoshima J (2002) Glycogen synthase kinase-3veta: a novel regulator of cardiac hypertrophy and development. Circ Res 90:1055–1063

    PubMed  CAS  Google Scholar 

  166. Phili-Couderc P, Pathak A, Smith F, Dambrin C, Harmancey R, Buys S, Galinier M, Massabuau P, Roncalli J, Senard J-M, Rouet P (2004) Uncomplicated human obesity is associated with a specific cardiac transcriptome: involvement of the Wnt pathway. FASEB J 18:1539–1540

    Google Scholar 

  167. Innis SM, de La Presa Owens S (2001) Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain. J Nutr 131:118–122

    PubMed  CAS  Google Scholar 

  168. de La Presa Owens S, Innis SM (2000) Diverse, region-specific effects of addition of arachidonic and docosahexaenoic acids to formula with low or adequate linoleic and alpha-linolenic acids on piglet brain monoaminergic neurotransmitters. Pediatr Res 48:125–130

    PubMed  CAS  Google Scholar 

  169. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA (2003) Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 111:39–44

    Google Scholar 

  170. Whalley LJ, Fox HC, Wahle KW, Starr JM, Deary IJ (2004) Cognitive aging, childhood intelligence, and the use of food supplements: possible involvement of n-3 fatty acids. Am J Clin Nutr 80:1650–1657

    PubMed  CAS  Google Scholar 

  171. Gustafsson PA, Duchen K, Birberg U, Karlsson T (2004) Breastfeeding, very long polyunsaturated fatty acids (PUFA) and IQ at 6 1/2 years of age. Acta Paediatr 93:1280–1287

    PubMed  CAS  Google Scholar 

  172. Auestad N, Scott DT, Janowsky JS, Jacobsen C, Carroll RE, Montalto MB, Halter R, Qiu W, Jacobs JR, Connor WE, Connor SL, Taylor JA, Neuringer M, Fitzgerald KM, Hall RT (2003) Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 112(3 Pt 1):e177–e183

    PubMed  Google Scholar 

  173. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M (1998) Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 352:688–691

    PubMed  CAS  Google Scholar 

  174. de La Presa Owens S, Innis SM (1999) Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr 129:2088–2093

    PubMed  CAS  Google Scholar 

  175. Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N Jr, Yavin E (2005) Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem 95:1550–1562

    PubMed  CAS  Google Scholar 

  176. Acar N, Chardigny JM, Berdeaux O, Alamnza S, Sebedio JL (2002) Modification of the monoaminergic neurotransmitters in frontal cortex and hippocampus by dietary trans alpha-linolenic acid in piglets. Neurosci Lett 331:198–202

    PubMed  CAS  Google Scholar 

  177. Delion S, Chalon S, Guilloteau D, Besnard JC, Durand G (1996) Alpha-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J Neurochem 66:1582–1591

    PubMed  CAS  Google Scholar 

  178. Cunha RA, Ribeiro JA (1999) Facilitation of GABA release by arachidonic acid in rat hippocampal synaptosomes. Eur J Neurosci 11:2171–2174

    PubMed  CAS  Google Scholar 

  179. Cheramy A, Artaud F, Godeheu G, L’hirondel M, Glowinski J (1996) Stimulatory effect of arachidonic acid on the release of GABA in matrix-enriched areas from the rat striatum. Brain Res 742:185–194

    PubMed  CAS  Google Scholar 

  180. Nabekura J, Noguchi K, Witt MR, Neilsen M, Akaike N (1998) Functional modulation of human recombinant gamma-aminobutyric acid type A receptor by docosahexaenoic acid. J Biol Chem 273:11056–11061

    PubMed  CAS  Google Scholar 

  181. Hamano H, Nabekura J, Nishikawa M, Ogawa T (1996) Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol 75:1264–1270

    PubMed  CAS  Google Scholar 

  182. Almeida T, Cunha RA, Ribeiro JA (1999) Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res 826:104–111

    PubMed  CAS  Google Scholar 

  183. Blanchet F, Gauchy C, Perez S, Glowinski J, Kemel ML (1999) Role of arachidonic acid in the regulation of the NMDA-evoked release of acetylcholine in striatal compartments. Synapse 31:140–150

    PubMed  CAS  Google Scholar 

  184. Aid S, Vancassel S, Linard A, Lavialle M, Guesnet P (2005) Dietary docosahexaenoic acid [22:6(n-3)] as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus. J Nutr 135:1008–1013

    PubMed  CAS  Google Scholar 

  185. Minami M, Kimura S, Endo T, Hamaue N, Hirafuji M, Togashi H, Matsumoto M, Yoshioka M, Saito H, Watanabe S, Kobayashi T, Okuyama H (1997) Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneously hypertensive rats. Pharmacol Biochem Behav 58:1123–1129

    PubMed  CAS  Google Scholar 

  186. Zhang L, Reith ME (1996) Regulation of the functional activity of the human dopamine transporter by the arachidonic acid pathway. Eur J Pharmacol 315:345–354

    PubMed  CAS  Google Scholar 

  187. L’hirondel M, Cheramy A, Godeheu G, Glowinski J (1995) Effects of arachidonic acid on dopamine synthesis, spontaneous release, and uptake in striatal synaptosomes from the rat. J Neurochem 64:1406–1409

    PubMed  Google Scholar 

  188. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC (1991) Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature 353:164–167

    PubMed  CAS  Google Scholar 

  189. Rodriguez Y, Christophe AB (2005) Long-chain omega6 polyunsaturated fatty acids in erythrocyte phospholipids are associated with insulin resistance in non-obese type 2 diabetics. Clin Chim Acta 354:195–199

    PubMed  CAS  Google Scholar 

  190. Enriquez YR, Giri M, Rottiers R, Christophe A (2004) Fatty acid composition of erythrocyte phospholipids is related to insulin levels, secretion and resistance in obese type 2 diabetics on Metformin. Clin Chim Acta 346:145–152

    PubMed  CAS  Google Scholar 

  191. Borkman M, Storlien LH, Pan DA, Jenkins AB, Chisholm DJ, Campbell LV (1993) The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N Engl J Med 328:238–244

    PubMed  CAS  Google Scholar 

  192. Das UN, Vijay Kumar K, Krishna Mohan I (1994) Lipid peroxides and essential fatty acids in patients with diabetes mellitus and diabetic nephropathy. J Nutr Med 4:149–155

    Google Scholar 

  193. Warensjo E, Ohrvall M, Vessby B (2006) Fatty acid composition and estimated desaturase activities are associated with obesity and lifestyle variables in men and women. Nutr Metab Cardiovasc Dis 16:128–136

    PubMed  Google Scholar 

  194. Ozanne SE, Martensz ND, Petry CJ, Loizou CL, Hales CN (1998) Maternal low protein diet in rats programmes fatty acid desaturase activities in the offspring. Diabetologia 41:1337–1342

    PubMed  CAS  Google Scholar 

  195. Ohtani N, Ohta M, Sugano T (1997) Microdialysis study of modification of hypothalamic neurotransmitters in streptozotocin-diabetic rats. J Neurochem 69:1622–1628

    PubMed  CAS  Google Scholar 

  196. Takahashi A, Ishimaru H, Ikarashi Y, Maruyama Y (1994) Aspects of hypothalamic neuronal systems in VMH lesion-induced obese rats. J Auton Nerv Syst 48:213–219

    PubMed  CAS  Google Scholar 

  197. Barber M, Kasturi BS, Austin ME, Patel KP, Mohan Kumar SM, Mohan Kumar PS (2003) Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res 964:128–135

    PubMed  CAS  Google Scholar 

  198. Bhattacharjee AK, Chang L, Lee HJ, Bazinet RP, Seemann R, Rapoport SI (2005) D2 but not D1 dopamine receptor stimulation augments brain signaling involving arachidonic acid in unanesthetized rats. Psychopharmacology (Berl) 180:735–742

    CAS  Google Scholar 

  199. Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304:108–110

    PubMed  CAS  Google Scholar 

  200. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115

    PubMed  CAS  Google Scholar 

  201. Cowley M, Smart JL, Rubenstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low RD (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    PubMed  CAS  Google Scholar 

  202. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG (1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46:2119–2123

    PubMed  CAS  Google Scholar 

  203. Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, Hale J, Hoffmann J, Hsiung HM, Kriauciunas A et al (1995) The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 377:530–532

    PubMed  CAS  Google Scholar 

  204. Pinto S, Roseberry AG, Liu H, Diano S, Shanabrough M, Cai X, Friedman JM, Horvath TL (2004) Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304:110–115

    PubMed  CAS  Google Scholar 

  205. Elmquist JK, Flier JS (2004) The fat-brain axis enters a new dimension. Science 304:63–64

    PubMed  CAS  Google Scholar 

  206. Phipps K, Barker DJ, Hales CN et al (1993) Fetal growth and impaired glucose tolerance in men and women. Diabetologia 36:225–228

    PubMed  CAS  Google Scholar 

  207. Barker DJ, Hales CN, Fall CH et al (1993) Type 2 (non-insulin dependent) diabetes mellitus, hypertension, and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia 36:62–67

    PubMed  CAS  Google Scholar 

  208. Lucas A, Fewtrell MS, Cole TJ (1999) Fetal origins of adult disease-the hypothesis revisited. BMJ 319:245–249

    PubMed  CAS  Google Scholar 

  209. Das UN (1991) Essential fatty acids: biology and their clinical implications. Asia Pacific J Pharmacol 16:317–330

    Google Scholar 

  210. Das UN (1999) Essential fatty acids in health and disease. J Assoc Physicians India 47:906–911

    PubMed  CAS  Google Scholar 

  211. Das UN (2006) Essential fatty acids-a review. Curr Pharm Biotechnol 7:467–482

    PubMed  CAS  Google Scholar 

  212. Mercuri O, de Tomas E, Itarte H (1979) Prenatal protein depletion and δ9, δ6, and δ5 desaturases in the rat. Lipids 14:822–825

    PubMed  CAS  Google Scholar 

  213. Trottier G, Koski KG, Brun T, Toufexis DJ, Richard D, Walker CD (1998) Increased fat intake during lactation modifies hypothalamic-pituitary-adrenal responsiveness in developing rat pups: a possible role for leptin. Endocrinology 139:3704–3711

    PubMed  CAS  Google Scholar 

  214. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    PubMed  CAS  Google Scholar 

  215. Cha MC, Jones PJH (1998) Dietary fat type and energy restriction interactively influence plasma leptin concentrations in rats. J Lipid Res 39:1655–1660

    PubMed  CAS  Google Scholar 

  216. Korotkova M, Gabrielsson B, Hanson LA, Strandvik B (2001) Maternal essential fatty acid deficiency depresses serum leptin levels in suckling rat pups. J Lipid Res 42:359–365

    PubMed  CAS  Google Scholar 

  217. Korotkova M, Gabrielsson B, Hanson LA, Strandvik B (2002) Maternal dietary intake of essential fatty acids affects adipose tissue growth and leptin mRNA expression in suckling rat pups. Pediatr Res 52:78–84

    PubMed  CAS  Google Scholar 

  218. Dhalgren J, Nilsson C, Jennische E et al (2001) Prenatal cytokine exposure results in obesity and gender-specific programming. Am J Physiol 281:E326–E334

    Google Scholar 

  219. Zahorska-Markiewicz B, Janowska J, Olszanecka-Glinianowicz M et al (2000) Serum concentrations of TNF-α and soluble TNF-α receptors in obesity. Int J Obes 24:1392–1395

    CAS  Google Scholar 

  220. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukins-6: depot differences and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    PubMed  CAS  Google Scholar 

  221. Rask E, Walker BR, Soderberg S, Livingstone DEW, Eliasson M, Johnson O, Andrew R, Olsson T (2002) Tissue-specific changes in peripheral cortisol metabolism in obese women: increased 11β-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 87:3330–3336

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Das, U.N. (2011). Adult Diseases and Low-Grade Systemic Inflammation Have Their Origins in the Perinatal Period. In: Molecular Basis of Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0495-4_16

Download citation

Publish with us

Policies and ethics