Dental Development and Age at Death of a Middle Paleolithic Juvenile Hominin from Obi-Rakhmat Grotto, Uzbekistan

  • Tanya M. SmithEmail author
  • Donald J. Reid
  • Anthony J. Olejniczak
  • Shara Bailey
  • Mica Glantz
  • Bence Viola
  • Jean-Jacques Hublin
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Studies of dental development have reported conflicting results regarding whether Neanderthal growth and development was similar to that of modern humans. The discovery of a partial permanent maxillary juvenile dentition (OR-1) from the Obi-Rakhmat Grotto, Uzbekistan, provides the opportunity to assess dental development and age at death in a Paleolithic hominin with strong Neanderthal similarities using incremental dental features. Long-period lines on tooth crowns (perikymata) and roots (periradicular bands) were quantified, and crown formation, root development, and age at death were estimated. An anomalous upper molar was determined to be a left M2 with a rare developmental condition (gemination). Perikymata numbers for OR-1 were similar to modern southern African population means, but were less than modern northern European and Neanderthal means. Root extension rates were estimated to be similar to (or slightly higher than) modern human values, although few modern comparative data are available. Assuming the long-period line periodicity of this individual fell within a Neanderthal distribution (6–9 days), the maximum age at death of OR-1 is estimated at 8.1 years, but is more likely to have been 6.7–7.4 years (7 or 8 day periodicity). Modern European human developmental standards would suggest an age at death of approximately 8–9 years. These results are consistent with other studies suggesting that Neanderthal dental development overlaps with the low end of modern human populations, and demonstrates a greater range of variation in Middle Paleolithic hominins than previously reported. It is clear that perikymata number alone does not distinguish these taxa; data on long-period line periodicity and molar eruption would yield additional insight into Neanderthal life history.


Crown formation Root formation Perikymata Periradicular band Gemination Neanderthal Extension rate Life history Incremental feature 



The authors acknowledge the excavators of Obi-Rakhmat: Andrei Krivoshapkin, Patrick Wrinn, Anatoly Derevianko, and the rest of the Obi-Rakhmat team. We appreciate the comments of two reviewers, as well as the invitation to contribute to this volume by Silvana Condemi. Debbie Guatelli-Steinberg also provided helpful assistance by making comparative data available. Funding was provided by the Max Planck Society, the EVAN Marie Curie Research Training Network MRTN-CT-019564, and Harvard University.


  1. Bailey, S. E., Glantz, M., Weaver, T., & Viola, B. (2008). The affinity of the dental remains from Obi-Rakhmat Grotto, Uzbekistan. Journal of Human Evolution, 55, 238–248.CrossRefGoogle Scholar
  2. Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527.CrossRefGoogle Scholar
  3. Dean, M. C. (1995). The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In J. Moggi-Cecchi (Ed.), Aspects of dental ­biology: Paleontology, anthropology and evolution (pp. 239–265). Florence: International Institute for the Study of Man.Google Scholar
  4. Dean, M. C. (2006). Tooth microstructure tracks the pace of human life-history evolution. Proceedings of the Royal Society B, 273, 2799–2808.CrossRefGoogle Scholar
  5. Dean, M. C., Stringer, C. B., & Bromage, T. G. (1986). Age at death of the Neanderthal child from Devil’s Tower, Gibraltar and the implications for studies of general growth and development in Neanderthals. American Journal Physical Anthropology, 70, 301–309.CrossRefGoogle Scholar
  6. Dean, M. C., Beynon, A. D., Reid, D. J., & Whittaker, D. K. (1993). A longitudinal study of tooth growth in a single individual based on long- and short-period incremental markings in dentine and enamel. International Journal of Osteoarchaeology, 3, 249–264.CrossRefGoogle Scholar
  7. Dean, C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., & Walker, A. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631.CrossRefGoogle Scholar
  8. Glantz, M. M., Viola, T. B., & Chikisheva, T. (2004). New hominid remains from Obi-Rakhmat grotto. In A. P. Derevianko (Ed.), Obi-Rakhmat grotto (pp. 77–99). Novosibirsk: Institute of Archaeology and Ethnography SB RAS Press.Google Scholar
  9. Glantz, M., Viola, B., Wrinn, P. J., Chikisheva, T., Derevianko, A., Krivoshapkin, A. I., Islamov, U., Suleimanov, R. H., & Ritzman, T. (2008). New hominin remains from Uzbekistan. Journal of Human Evolution, 55, 223–237.CrossRefGoogle Scholar
  10. Guatelli-Steinberg, D., & Reid, D. J. (2008). What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution, 54, 236–250.CrossRefGoogle Scholar
  11. Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A., & Larsen, C. S. (2005). Anterior tooth growth periods in Neanderthals were comparable to those of modern humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 14197–14202.CrossRefGoogle Scholar
  12. Guatelli-Steinberg, D., Reid, D. J., & Bishop, T. A. (2007). Did the lateral enamel of Neandertal anterior teeth grow differently from that of modern humans? Journal of Human Evolution, 52, 72–84.CrossRefGoogle Scholar
  13. Kronfeld, R. (1939). Histopathology of the teeth and their surrounding structures. Philadelphia: Lea & Febiger.Google Scholar
  14. Liversidge, H. (2003). Variation in modern human development. In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the Genus Homo (pp. 73–113). Cambridge: Cambridge University Press.Google Scholar
  15. Liversidge, H. (2008). Timing of human mandibular third molar formation. Annals of Human Biology, 35, 294–321.CrossRefGoogle Scholar
  16. Macchiarelli, R., Bondioli, L., Debénath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., & Dean, C. (2006). How Neanderthal molar teeth grew. Nature, 444, 748–751.CrossRefGoogle Scholar
  17. Mann, A., & Vandermeersch, B. (1997). An adolescent female Neandertal mandible from Montgaudier Cave, Charente, France. American Journal of Physical Anthropology, 103, 507–527.CrossRefGoogle Scholar
  18. Mann, A. E., Monge, J. M., & Lampl, M. (1991). Investigation into the relationship between perikymata counts and crown formation times. American Journal of Physical Anthropology, 86, 175–188.CrossRefGoogle Scholar
  19. Nunes, E., de Moraes, I., Novaes, P., & de Sousa, S. (2002). Bilateral fusion of mandibular second molars with supernumerary teeth: Case report. Brazilian Dental Journal, 13, 137–141.CrossRefGoogle Scholar
  20. Olejniczak, A. J., Grine, F. E., & Martin, L. B. (2007). Micro-computed tomography of primate molars: Methodological aspects of three-dimensional data collection. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (pp. 103–116). Dordrecht: Springer.CrossRefGoogle Scholar
  21. Ramirez Rozzi, F. (2005). Age at death of the Neanderthal child from Hortus. Bulletins et mémoires de la Société d’anthropologie de Paris, 17, 47–55.Google Scholar
  22. Ramirez-Rozzi, F. V. (1993a). Microstructure and development of the enamel tooth of the Neanderthal from Zafarraya, Spain. Comptes Rendus de l’Academie des Sciences, 316, 1635–1642.Google Scholar
  23. Ramirez-Rozzi, F. V. (1993b). Tooth development in East African Paranthropus. Journal of Human Evolution, 24, 429–454.CrossRefGoogle Scholar
  24. Ramirez Rozzi, F. V., & Bermudez de Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428, 936–939.CrossRefGoogle Scholar
  25. Reid, D., & Dean, M. C. (2006). Variation in modern human enamel formation times. Journal of Human Evolution, 50, 329–346.CrossRefGoogle Scholar
  26. Reid, D. J., & Ferrell, R. (2006). The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. Journal of Human Evolution, 50, 195–202.CrossRefGoogle Scholar
  27. Reid, D. J., Beynon, A. D., & Ramirez-Rozzi, F. V. (1998). Histological reconstruction of dental development in four individuals from a medieval site in Picardie, France. Journal of Human Evolution, 35, 463–477.CrossRefGoogle Scholar
  28. Reid, D. J., Guatelli-Steinberg, D., & Walton, P. (2008). Variation in modern human premolar enamel formation times: Implications for Neanderthals. Journal of Human Evolution, 54, 225–235.CrossRefGoogle Scholar
  29. Sasaki, C., Suzuki, K., Mishima, H., & Kozawa, Y. (2002). Age determination of the Dederiyeh 1 Neanderthal child using enamel cross-striations. In T. Akazawa & S. Muhesen (Eds.), Neanderthal burials: Excavations of the Dederiyeh Cave Afrin, Syria (pp. 263–267). Kyoto: International Research Center for Japanese Studies.Google Scholar
  30. Smith, B. H. (1991). Standards of human tooth formation and dental age assessment. In M. A. Kelley & C. S. Larsen (Eds.), Advances in dental anthropology (pp. 143–168). New York: Wiley-Liss.Google Scholar
  31. Smith, T. M. (2008). Incremental dental development: methods and applications in hominoid evolutionary studies. Journal of Human Evolution, 54, 205–224.CrossRefGoogle Scholar
  32. Smith, T. M., & Reid, D. J. (2009). Temporal nature of periradicular bands (“striae periradicales”) on mammalian tooth roots. In: T. Koppe, G. Meyer, & K.W. Alt (Eds.), Comparative Dental Morphology (pp. 86–92). Basel: Karger.Google Scholar
  33. Smith, T. M., Tafforeau, P. T., Reid, D. J., Grün, R., Eggins, S., Boutakiout, M., & Hublin, J.-J. (2007a). Earliest evidence of modern human life history in North African early Homo sapiens. Proceedings of the National Academy of Sciences of the United States of America, 104, 6128–6133.CrossRefGoogle Scholar
  34. Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J.-J. (2007b). Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Sciences of the United States of America, 104, 20220–20225.CrossRefGoogle Scholar
  35. Smith, T. M., Reid, D. J., Dean, M. C., Olejniczak, A. J., Ferrell, R. J., & Martin, L. B. (2007c). New perspectives on chimpanzee and human dental development. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (pp. 177–192). Dordrecht: Springer.CrossRefGoogle Scholar
  36. Smith, T. M., Tafforeau, P., Reid, D. J., Pouech, J., Lazzari, V., Zermeno, J. P., Guatelli-Steinberg, D., Olejniczak, A. J., Hoffman, A., Radovcic, J., Masrour, M., Toussaint, M., Stringer, C. & Hublin, J-J. (2010). Dental evidence for ontogenetic differences between modern humans and Neanderthals. Proceedings of the National Academy Sciences of the United States of America 107, 20923–20928.Google Scholar
  37. Smith, T. M., Harvati, K., Olejniczak, A. J., Reid, D. J., Hublin, J.-J., & Panagopoulou, E. (2009). Brief communication: Dental development and enamel thickness in the Lakonis Neanderthal molar. American Journal of Physical Anthropology, 138, 112–118.CrossRefGoogle Scholar
  38. Stringer, C. B., & Dean, M. C. (1997). Age at death of Gibraltar 2 – a reply. Journal of Human Evolution, 32, 471–472.CrossRefGoogle Scholar
  39. Stringer, C. B., Dean, M. C., & Martin, R. D. (1990). A comparative study of cranial and dental development within a recent British sample and among Neandertals. In C. J. De Rousseau (Ed.), Primatelife history and evolution (pp. 115–152). New York: Wiley-Liss.Google Scholar
  40. Tillier, A. M. (2000). Neanderthal ontogeny: a new source for critical analysis. Anthropologie, XXXVIII(1), 109–120.Google Scholar
  41. Tsesis, I., Steinbock, N., Rosenberg, E., & Kaufman, A. Y. (2003). Endodontic treatment of developmental anomalies in posterior teeth: Treatment of geminated/fused teeth- report of two cases. International Endodontic Journal, 36, 372–379.CrossRefGoogle Scholar
  42. Turell, I., & Zmener, O. (1999). Endodontic management of a mandibular third molar fused with a fourth molar. International Endodontic Journal, 32, 229–231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tanya M. Smith
    • 1
    • 2
    Email author
  • Donald J. Reid
    • 3
  • Anthony J. Olejniczak
    • 2
  • Shara Bailey
    • 4
  • Mica Glantz
    • 5
  • Bence Viola
    • 6
  • Jean-Jacques Hublin
    • 2
  1. 1.Department of Human Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  3. 3.Department of Oral Biology School of Dental SciencesUniversity of Newcastle upon TyneNewcastle upon TyneUK
  4. 4.Department of AnthropologyNew York UniversityNew YorkUSA
  5. 5.Department of AnthropologyColorado State UniversityFt. CollinsUSA
  6. 6.Department of AnthropologyUniversity of ViennaViennaAustria

Personalised recommendations