Advertisement

Prospects for Harmonized Biodiversity Assessments Using National Forest Inventory Data

  • Ronald E. McRobertsEmail author
  • Gherardo Chirici
  • Susanne Winter
  • Anna Barbati
  • Piermaria Corona
  • Marco Marchetti
  • Elmar Hauk
  • Urs-Beat Brändli
  • Jana Beranova
  • Jacques Rondeux
  • Christine Sanchez
  • Roberta Bertini
  • Nadia Barsoum
  • Iciar Alberdi Asensio
  • Sonia Condés
  • Santiago Saura
  • Stefan Neagu
  • Catherine Cluzeau
  • Nabila Hamza
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 20)

Abstract

Following selection of the 13 biodiversity variables that were evaluated as both important and feasible for assessment by NFIs and grouping them into essential features, additional information was solicited regarding the degree to which the 13 variables are currently assessed by NFIs. The objective was to evaluate the prospects for harmonized estimates of biodiversity indicators based on these variables. The prospects varied considerably depending on the particular variable and essential feature. The evaluations produced positive harmonization possibilities for forest categories and the tree height and diameter variables associated with forest structure. For forest age, possibilities were constrained by lack of common reference definitions. However, possibilities for construction of a common reference definition and bridges to compensate for the differences in estimates resulting from using national and reference definitions were deemed positive. Prospects for regeneration, ground vegetation, and naturalness were less positive because of variability in definitions, assessment methods, measurement thresholds and other factors. Thus, efforts at harmonization for these essential features were constrained to a few variables or a few countries with similar NFI features.

Keywords

Forest Structure Ground Vegetation National Forest Inventory Tree Species Composition Forest Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aamlid, D., Canullo, R., & Starlinger, F. (2007). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of the effects of air pollution on forest. Part VIII. Assessment of ground vegetation. International co-operative programme on assessment and monitoring of air pollution effects on forests, United Nations Economic Commission for Europe (UNECE) Convention on long-range transboundary air pollution. http://www.icp-forests.org/pdf/manual8.pdf. Accessed Mar 2009.
  2. Aguilo, M., Aramburu, M. P., Blanco, A., Calatayud, T., Carrasco, R., Castilla, G., Castillo, V., Cenal, M., Cifuentes, P., Diaz, M., Diaz, A., Escribano, R., Escribano, M., Frutos, M., Galiana, F., García, A., Glaria, G., González, S., González, C., Iglesias, E., Martin, A., Martinez, E., Milara, R., Monzon, A., Ortega, C., Otero, I., Pedraza, J., Pinedo, A., Puig, J., Ramos, A., Rodríguez, I., Sanz, M. A., Tevar, G., Torrecilla, I., & Yoldi, L. (1992). Guía para la elaboración de estudios del medio físico: contenido y metodología (p. 809). Madrid: Ministerio de Medio Ambiente.Google Scholar
  3. Alberdi, I., Condes, S., & Martinez-Millán, J. (2010). Review of monitoring and assessing ground vegetation biodiversity in national forest inventories. Environmental Monitoring and Assessment, 164, 649–676.PubMedCrossRefGoogle Scholar
  4. Aldrich, P. R., Parker, G. R., Romero-Severson, J., & Michler, C. H. (2005). Confirmation of oak recruitment failure in Indiana old-growth forest: 75 years of data. Forest Science, 51, 406–416.Google Scholar
  5. Anderson, J. E. (1991). A conceptual framework for evaluating and quantifying naturalness. Conservation Biology, 5(3), 347–352.CrossRefGoogle Scholar
  6. Angermeier, P. L. (2000). The natural imperative for biological conservation. Conservation Biology, 14(2), 373–381.CrossRefGoogle Scholar
  7. Angermeier, P. L., & Karr, J. R. (1994). Biological integrity versus biological diversity as policy directives. Bioscience, 44(10), 690–697.CrossRefGoogle Scholar
  8. Augusto, L., Dupouey, J.-L., & Ranger, R. (2003). Effects of tree species on understory vegetation and environmental conditions in temperate forests. Annals of Forest Science, 60, 823–831.CrossRefGoogle Scholar
  9. Avery, T. E., & Burkhardt, H. E. (2002). Forest measurements (5th ed., p. 456). Boston: McGraw-Hill.Google Scholar
  10. Axelsson, A. L., & Fridman, J. (2005). Country report for forest focus- Common project. http://www.resgeom.slu.se/resana/projekt/common/Documents/Country%20reports/Sweden%20country%20report.pdf. Accessed Mar 2009.
  11. Axelsson, R., Angelstam, P., & Svensson, J. (2007). Natural forest and cultural woodland with continuous tree cover in Sweden: how much remains and how is it managed? Scandinavian Journal of Forest Research, 22, 545–558.CrossRefGoogle Scholar
  12. Baier, R., Meyer, J., & Göttlein, A. (2005). Regeneration niches of Norway spruce (Picea abies [L.] Karst.) saplings in small canopy gaps in mixed mountain forests of the Bavarian Limestone Alps. European Journal of Forest Research, 126, 11–22. Published online: 6 Dec 2005 Springer.CrossRefGoogle Scholar
  13. Barbati, A., Corona, P., & Marchetti, M. (2007). A forest typology for monitoring sustainable forest management: the case of European forest types. Plant Biosystems, 141, 93–103.Google Scholar
  14. Barsoum, N. (2002). Relative contributions of sexual and asexual regeneration strategies in Populus nigra and Salix alba during the first years of establishment on a braided gravel bed river. Evolutionary Ecology, 15, 255–279.CrossRefGoogle Scholar
  15. Barsoum, N., Muller, E., & Skot, L. (2004). Variations in levels of clonality among Populus nigra L. stands of different ages. Evolutionary Ecology, 18, 601–624.CrossRefGoogle Scholar
  16. Bartha, D., Odor, P., Horvath, T., Timar, G., Kenderes, K., Standovar, T., Bölöni, J., SZmorad, F., Bodonczi, L., & Aszalos, R. (2006). Relationship of tree stand heterogeneity and forest naturalness. Acta Silvatica et Lignaria Hungarica, 2, 7–22.Google Scholar
  17. Bitterlich, W. (1984). The relascope idea. Relative measurements in forestry. Norwich: Commonwealth Agricultural Bureaux, Page Bros.Google Scholar
  18. Blume, P., & Sukopp, H. (1976). Ökologische Bedeutung anthropogener Bodenveränderungen. Schreiftenreihe Vegetationskunde, 10, 7–89.Google Scholar
  19. Boddy, L. (2001). Fungal community ecology and wood decomposition processes in angiosperms: from standing tree to complete decay of coarse woody debris. Ecological Bulletin, 49, 43–56.Google Scholar
  20. Böhl, J., & Brändli, U.-B. (2007). Deadwood volume assessment in the third Swiss National Forest Inventory: methods and first results. European Journal of Forest Research, 126, 449–457.CrossRefGoogle Scholar
  21. Bohn, U., Gollub, G., & Hettwer, C. (2000). Map of the natural vegetation of Europe. Bonn: Federal Agency for Nature Conservation.Google Scholar
  22. Bonham, C. D. (1989). Measurements for terrestrial vegetation. United States of America: Wiley.Google Scholar
  23. Bosch, P., & Söderbäck, E. (1997). European environmental state indicators. Project report, European Environment Agency, Copenhagen and Swedish Environmental Protection Agency, Stockholm.Google Scholar
  24. Brändli, U.-B., Bühler, C., & Zangger, A. (2007a). Waldindikatoren zur Artenvielfalt - Erkenntnisse aus LFI und BDM Schweiz. Schweizerische Zeitschrift fur Forstwesen, 158, 243–254.CrossRefGoogle Scholar
  25. Brändli, U.-B., Bühler, C., & Zangger, A. (2007b). Biodiversität und Waldinventuren. LFI info, 7, 1–6.Google Scholar
  26. Branquart, E., & Latham, J. (2007). Selection criteria for protected forest areas dedicated to biodiversity conservation in Europe. In G. Frank et al. (Eds.), COST Action E27, Protected forest areas in Europe – analysis and harmonization (PROFOR): Results, conclusions, and recommendations. Vienna, Austria: Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW).Google Scholar
  27. Braun-Blanquet, J. (1965). Plant sociology; the study of plant communities. London: Halner.Google Scholar
  28. Brodie, A., Bowering, M., Jaross, W., Reimer, D., & Lu, B. (2007). Combining management goals of wildlife habitat conservation and revenue on Washington State trusts U S forest service Pacific Northwest research station general technical report PNW-GTR Issue: 67–80.Google Scholar
  29. Buongiorno, J., Dahir, S., Ly, H.-C., & Lin, C.-R. (1994). Tree size diversity and economic returns in uneven-aged forest stands. Forest Science, 40(1), 83–103.Google Scholar
  30. Burschel, P. (1992). Experiments in mixed mountain forests in Bavaria. In M. J. Kelty, B. C. Larson, & C. D. Oliver (Eds.), The ecology and silviculture of mixed-species forests (pp. 183–215). Dordrecht: Kluwer Academic Publishers.Google Scholar
  31. Chirici, G., Winter, S., Bastrup-Birk, A., Rondeux, J., Bertini, R., McRoberts R.E., Barsoum, N., Alberdi, I., Brändli, U.-B., & Marchetti, M. (submitted). Harmonised estimation of forest biodiversity indicators at the cross-regional scale using data from national forest inventories. Forest Science.Google Scholar
  32. Christensen, M., Hahn, K., Mountford, E., Ódor, P., Rozenberger, D., Diaci, J., Standovar, T., Wijdeven, S., Winter, S., Vrska, T., & Meyer, P. (2005). Dead wood in European beech (Fagus) forest reserves. Forest Ecology and Management, 210, 267–282.CrossRefGoogle Scholar
  33. Ciancio, O., Corona, P., Iovino, F., Menguzzato, G., & Scotti, R. (1999). Forest management on a natural basis: the fundamentals and case studies. Journal of Sustainable Forestry, 1(2), 89–95.Google Scholar
  34. Cochrane, M. A., & Schulze, M. D. (1999). Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass and species composition. Biotropica, 31, 2–16.Google Scholar
  35. COST E43 (2005). Harmonization of National forest inventories in Europe: Techniques for common reporting. Reports and proceedings. http://www.metla.fi/eu/cost/e43. Accessed Mar 2008.
  36. Crumpacker, D. W. (1998). Prospects for sustainability of biodiversity based on conservation biology and US Forest Service approaches to ecosystem management. Landscape and Urban Planning, 40, 47–71.CrossRefGoogle Scholar
  37. Davies, C. E., Moss, D., O. & Hill M. (2004). EUNIS habitat classification revised 2004. http://EUNIS.eea.eu.int/upload/EUNIS_2004_report.pdf. Accessed Mar 2009.
  38. Deconchat, M., & Balent, G. (2001). Vegetation and bird community dynamics in fragmented coppice forests. Forestry, 74, 105–118.CrossRefGoogle Scholar
  39. De Graaf, R. M., Hestbeck, J. B., & Yamasaki, M. (1998). Associations between breeding bird abundance and stand structure in the White Mountains, New Hampshire and Maine, USA. Forest Ecology and Management, 103, 217–231.CrossRefGoogle Scholar
  40. Douhovnikoff, V., Cheng, A. M., & Dodd, R. S. (2004). Incidence, size and spatial structure of clones in second-growth stands of coast redwood, Sequoia semperverins (Cupressaceae). American Journal of Botany, 91, 1140–1146.CrossRefGoogle Scholar
  41. Duelli, P., & Obrist, M. K. (2003). Biodiversity indicators: the choice of values and measures. Agriculture, Ecosystems & Environment, 98, 87–89.CrossRefGoogle Scholar
  42. Dusan, R., Mikac, S., Anić, I., & Diaci, J. (2007). Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech – fir forest reserves in South East Europe. Forestry, 80(4), 431–443.CrossRefGoogle Scholar
  43. Ellenberg, H., & Mueller-Dumbois, D. (1967). A key to Raunkiaer plant life forms with revised subdivisions. Berichte des Geobotanisches Institut, Die Eidgenössische Technische Hochschule Stiftung Rübel, Zurich:56–73.Google Scholar
  44. Ellison, A. M., Bank, M. S., Clinton, B. D., Colburn, E. A., Elliott, K., Ford, C. R., Foster, D. R., Kloeppel, B. D., Knoepp, J. D., Lovett, G. M., Mohan, J., Orwig, D. A., Rodenhouse, N. L., Sobczak, W. V., Stinson, K. A., Stone, J. K., Swan, C. M., Thompson, J., Von Holle, B., & Webster, J. R. (2005). Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479–486.CrossRefGoogle Scholar
  45. European Environment Agency (EEA) (2003). An inventory of biodiversity indicators in Europe, 2002. European Environment Agency, Copenhagen. Technical report no 92. pp. 42.Google Scholar
  46. European Environment Agency (EEA) (2006). European forest types. Categories and types for sustainable forest management and reporting. EEA Technical report no. 9/2006.Google Scholar
  47. Eyre, T. J., Kelly, A. L., & Nelder, V. J. (2006). Methodology for the establishment and survey of reference sites for BioCondition. http://www.epa.qld.gov.au/publications/p01993aa.pdf/Methodology_for_the_establishment_and_survey_of_reference_sites_for_BioCondition_version_14.pdf. Accessed Mar 2009.
  48. Ferris, R., & Humphrey, J. W. (1999). A review of potential biodiversity indicators for application in British forests. Forestry, 72(4), 312–328.CrossRefGoogle Scholar
  49. Flade, M., Möller, G., Schumacher, H., & Winter, S. (2004). Naturschutzstandards für die Bewirtschaftung von Buchenwäldern im nordostdeutschen Tiefland. Der Dauerwald – Zeitschrift für naturgemäße Waldwirtschaft, 29, 15–28.Google Scholar
  50. Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., & Carpenter, S. R. (2005). Global consequences of land use. Science, 309, 570–574.PubMedCrossRefGoogle Scholar
  51. Food and Agriculture Organization of the United Nations (FAO) (2005). Global forest resources assessment update. Terms and definitions (Final version). Working paper 83. Rome 2004. Available at http://www.fao.org/docrep/007/ae156e/AE156E00HTM. Accessed December 2010.
  52. Frey, D. (1975). Biological integrity of water: An historical perspective. In R. K. Ballentine & L. J. Guarraia (Eds.), The integrity of water (pp. 127–139). Washington, DC: EPA.Google Scholar
  53. Gärtner, S., & Reif, A. (2005). The response of ground vegetation to structural change during forest conversion in the southern Black Forest. European Journal of Forest Research, 124, 221–231.CrossRefGoogle Scholar
  54. Gilg, O. (2005). Old-growth forests: Characteristics, conservation and monitoring. Technical report no 74 bis. ATEN, Montpellier. 96 pp.Google Scholar
  55. Grabherr, G., Koch, G., Kirchmeir, H., & Reiter, K. (1998). Hemerobie österreichischer Waldökosysteme (17th ed., p. 493). Innsbruck: Veröffentlichungen des Österreichischen MaB-Programms.Google Scholar
  56. Granke, O. (2006). Assessment of ground vegetation. ForestBIOTA work report. http://www.forestbiota.org. Accessed Mar 2009.
  57. Groombridge, B., & Jenkins, M. D. (1996). Assessing biodiversity status and sustainability (Vol. 5). Cambridge: World Conservation Press, WCMC Biodiversity.Google Scholar
  58. Gustafsson, L. (2002). Presence and abundance of red-listed plant species in Swedish forests. Conservation Biology, 16(2), 377–388.CrossRefGoogle Scholar
  59. Gustafsson, L., & Hallingbäck, T. (1988). Bryophyte flora and vegetation of managed and virgin coniferous forests in South-West Sweden. Biological Conservation, 44, 238–300.CrossRefGoogle Scholar
  60. Halpern, C. B., & Spies, T. A. (1995). Plant species diversity in natural and managed forests of the Pacific Northwest. Ecological Applications, 5, 913–934.CrossRefGoogle Scholar
  61. Hansen, A. J., Spies, T. A., Swanson, F. J., & Ohmann, J. L. (1991). Conserving biodiversity in managed forests. Bioscience, 41(6), 382–392.CrossRefGoogle Scholar
  62. Hanski, I., & Hammond, P. (1995). Biodiversity in boreal forests. Trends in Ecology & Evolution, 10, 5–6.CrossRefGoogle Scholar
  63. Harris, L. D. (1984). The fragmented forest. Chicago: University of Chicago Press.Google Scholar
  64. Helms, J. A. (Ed.). (1998). The dictionary of forestry. Bethesda: Society of American Foresters, ISBN 0-939970-73-2. pp. 210.Google Scholar
  65. Hočevar, M., & Kovač, M. (2004). A short description of the Slovenian NFI, updated 27.10.2004. http://www.gozdis.si/departments/geomatics/nfi_si.pdf. Accessed March 2009.
  66. Hoerr, W. (1993). The concept of naturalness in environmental discourse. Natural Areas Journal, 13(1), 29–32.Google Scholar
  67. Hummel, F. (1991). Comparisons of forestry in Britain and mainland Europe. Forestry, 64(2), 141–155.CrossRefGoogle Scholar
  68. International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests in co-operation with the European Commission (ICP) (2009). http://www.icp-forests.org. Accessed Mar 2010.
  69. Jalas, J. (1955). Hemerobe und hemerochore Pflanzenarten. Ein terminologischer Reformversuch. Acta Societatia Pro Fauna et Flora Fennica, 72, 1–15.Google Scholar
  70. Johnson, S., Erika, E., Mudrak, L., & Waller, D. M. (2006). A comparison of sampling methodologies for long-term forest vegetation monitoring in the great lakes network National Parks. http://science.nature.nps.gov/im/units/GLKN/Veg%20Plot%20Comparison.pdf. Great Lakes Network Report. Accessed Mar 2009.
  71. Jonsson, B. G., & Jonsell, M. (1999). Exploring potential biodiversity indicators in boreal forests. Biodiversity and Conservation, 8, 1417–1433.CrossRefGoogle Scholar
  72. Karr, J. R. (1991). Biological integrity: a long neglected aspect of water resource management. Ecological Applications, 1, 66–84.CrossRefGoogle Scholar
  73. Khanina, L., Bobrovsky, M., Komarov, A., & Mikhajlov, A. (2007). Modeling dynamics of forest ground vegetation diversity under different forest management regimes. Forest Ecology and Management, 248(1/2), 80–94.CrossRefGoogle Scholar
  74. Koop, H., & Hilgen, P. (1987). Forest dynamics and regeneration mosaic shifts in unexploited beech (Fagus sylvatica) stands at Fontainebleau (France). Forest Ecology and Management, 20, 135–150.CrossRefGoogle Scholar
  75. Kowarik, I. (1990). Natürlichkeit, Naturnähe und Hemerobie als Bewertungskriterien. In H. Sukopp, S. Hejný, & I. Kowarik (Eds.), Urban ecology. The Hague: SBP Academic Publications.Google Scholar
  76. Kraft, G. (1884). Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Hannover: Klindworth Verlag.Google Scholar
  77. Kuuluvainen, T., Penttinen, A., Leinonen, K., & Nygren, M. (1996). Statistical opportunities for comparing stand structural heterogeneity in managed and primeval forests: an example from boreal spruce forest in southern Finland. Silva Fennica, 30(2/3), 315–328.Google Scholar
  78. Kuuluvainen, T., Kimmo, S., & Kalliola, R. (1998). Structure of a pristine Picea abies forest in northeastern Europe. Journal of Vegetation Science, 9, 563–574.CrossRefGoogle Scholar
  79. Lähde, E., Laiho, O., & Norokorpi, Y. (1999). Diversity-oriented silviculture in the boreal zone of Europe. Forest Ecology and Management, 118, 223–243.CrossRefGoogle Scholar
  80. Lane, A., & Tait, J. (1990). Practical conservation woodlands (p. 128). London: Hodder and Stoughton.Google Scholar
  81. Larsen, J. B. (1995). Ecological stability of forests and sustainable silviculture. Forest Ecology and Management, 73, 85–96.CrossRefGoogle Scholar
  82. Larsson, T-B, Svensson, L., Angelstam, P., Balent, G., Barbati, A., & Bijlsma, R.-J., Boncina, A., Bradshaw, R., Bücking, W., Ciancio, O., Corona, P., Diaci, J., Dias, S., Ellenberg, H., Fernandes, F. M., Fernàndez-Gonzalez, F., Ferris, R., Frank, G., Møller, P. F., Giller, P. S., Gustafsson, L., Halbritter, K., Hal, S., Hansson, L., Innes, J., Jactel, H., Keannel Doppertin, M., Klein, M., Marchetti, M., Mohren, F., Niemelä, P., O’Halloran, J., Rametsteiner, E., Rego, F., Scheidegger, C., Scotti, R., Sjöberg, K., Spanos, I., Spanos, K., Standovár, T., Tømmerås, Å., Trakolis, D., Uuttera, J., Walsh, P. M., Vandekerkhove, K., Watt, A. D., VenDenMeersschaut, D. (2001). Biodiversity evaluation tools for European forests. Ecological Bulletins, 50. 236 pp.Google Scholar
  83. Leibundgut, H. (1956). Empfehlungen für die Baumklassenbildung und Methodik bei Versuchen über die Wirkung von Waldpflegemassahmen. IUFRO Section 23, Report 10.Google Scholar
  84. Leopold, A. (1949). A sand county almanac. New York: Oxford University Press.Google Scholar
  85. Liira, J., Sepp, T., & Parrest, O. (2007). The forest structure and ecosystem quality in conditions of anthropogenic disturbance along productivity gradient. Forest Ecology and Management, 250, 34–36.CrossRefGoogle Scholar
  86. Lindenmayer, D. B., & Franklin, J. F. (1997). Managing stand structure as part of ecologically sustainable forest management in Australian mountain ash forests. Conservation Biology, 11(5), 1053–1068.CrossRefGoogle Scholar
  87. Linder, P., Elfving, B., & Zackrisson, O. (1997). Stand structure and successional trends in virgin boreal forest reserves in Sweden. Forest Ecology and Management, 98, 17–33.CrossRefGoogle Scholar
  88. Loiskekoski, M., Mahonen, M., Puranen, R., & Rizk, N. (1993). Sound forestery – sustainabel development. (p. 186). Ministry of Agriculture and Foresty. Helsinki, Finland.Google Scholar
  89. Machado, A. (2004). An index of naturalness. Journal for Nature Conservation, 12, 95–110.Google Scholar
  90. MacMahon, J. A., Schimpf, D. H., Andersen, D. C., Smith, K. G., & Bayn, R. L. (1981). An organism-centered approach to some community and ecosystem concepts. Journal of Theoretical Biology, 88(2), 287–307.PubMedCrossRefGoogle Scholar
  91. Maltamo, M., Kangas, A., Uuttera, J., Tornianianen, T., & Saramäki, J. (2000). Forest Ecology and Management, 133, 263–274.CrossRefGoogle Scholar
  92. McComb, W., & Lindenmayer, D. (1999). Dying, dead and down trees. In M. L. Hunter (Ed.), Maintaining biodiversity in forest ecosystems. Cambridge: Cambridge University Press.Google Scholar
  93. McComb, W. C., Spies, T. A., & Emmingham, W. H. (1993). Douglas-fir forests: managing for timber and mature-forest habitat. Journal of Forestry, 91(12), 31–42.Google Scholar
  94. McGee, G. G., & Kimmerer, R. W. (2002). Forest age and management effects on epiphytic bryophyte communities in Adirondack northern hardwood forests, New York, USA. Canadian Journal of Forest Research, 32, 1562–1576.CrossRefGoogle Scholar
  95. McRoberts, R. E. (2009). A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes. Remote Sensing of Environment, 113, 532–545.CrossRefGoogle Scholar
  96. McRoberts, R. E., Tomppo, E. O., Schadauer, K., Vidal, C., Ståhl, G., Chirici, G., Lanz, A., Cienciala, E., Winter, S., & Smith, W. B. (2009). Harmonizing national forest inventories. Journal of Forestry, 107, 179–187.Google Scholar
  97. McRoberts, R. E., Winter, S., & Chirici, G. (submitted). Assessing forest naturalness. Forest Science.Google Scholar
  98. Michalak, R. (2008). Comparison of the scope, terms, definitions and classifications applied for the FAO global forest resources assessment 2010 and the MCPFE/UNECE/FAO Report on State of Europe’s Forests 2007. Part I definitions and classifications structured according to FRA reporting tables. UNECE/FAO Timber Section. Geneva, August 2008. http://timber.unece.org/fileadmin/DAM/meetings/5.1_Formats_and_definitions_1_01.pdf. Accessed Mar 2009.
  99. Michel, A., & Winter, S. (2009). Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, USA. Forest Ecology and Management, 257, 1453–1464.CrossRefGoogle Scholar
  100. Ministerial Conference on the Protection of Forests in Europe (MCPFE) (1998). Third ministerial conference on the protection of forests in Europe. 2–4 June 1998, Lisbon/Portugal. Annex 1 of the Resolution L2. Pan-European Criteria and Indicators for Sustainable Forest Management. http://www.mcpfe.org. Accessed Mar 2009.
  101. Ministerial Conference on the Protection of Forests in Europe (MCPFE) (2003). Improved Pan-European indicators for sustainable forest management as adopted by the MCPFE Expert Level Meeting 7–8 October 2002, Vienna, Austria. http://www.mcpfe.org. Accessed Oct 2008.
  102. Ministerial Conference on the Protection of Forests in Europe (MCPFE) (2007). Warsaw declaration. In Proceedings of the fifth ministerial conference on the protection of forests in Europe. Warsaw, 5–7 November 2007. http://www.mcpfe.org. Accessed Mar 2008.
  103. Montes, F., Canellas, I., Alberdi, I., Condes, S., & Villanueva, J. A. (2005) Methodology used in the IFN, other forest inventories al regional scale and other plot nets in Spain for the assessment of the forest biodiversity through the dead wood, epiphytic lichens, stand structure and ground vegetation. Country report for forest focus- ComMon project.Google Scholar
  104. Montrial Process, M. (1998). Criteria and indicators for the conservation and sustainable management of temperate and boreal forests. Montreal: The Montreal Process.Google Scholar
  105. Montréal Process (2006). Criteria and indicators for the conservation and sustainable management of temperate and boreal forests. Montréal Process Liaison Office, International Forestry Cooperation Office, Forestry Agency, Japanese Ministry of Agriculture, Forestry and Fisheries, Tokyo, Japan. http://www.mpci.org/rep-pub/1995/santiago_e.html. Accessed Sept 2008.
  106. Mountford, E. P. (2002). Fallen dead wood levels in the near-natural beech forest at La Tillaie reserve, Fontainbleau, France. Forestry, 75, 203–208.CrossRefGoogle Scholar
  107. Müller, J., Strätz, C., & Hothorn, T. (2005). Habitat factors for land snails in European beech forests with a special focus on coarse woody debris. European Journal of Forest Research, 124, 233–242.CrossRefGoogle Scholar
  108. Nilsson, S. G., Niklasson, M., Hedin, J., Aronsson, G., Gutowski, J. M., Linder, P., Ljunberg, H., Mikusiński, G., & Ranius, T. (2002). Densities of large living and dead trees in old-growth temperate and boreal forests. Forest Ecology and Management, 161, 189–204.CrossRefGoogle Scholar
  109. Nordén, B., & Appelqvist, T. (2001). Conceptual problems of ecological continuity and its bioindicators. Biodiversity and Conservation, 10, 779–791.CrossRefGoogle Scholar
  110. Norton, T. W. (1996). Conservation of biological diversity in temperate and boreal forest ecosystems. Forest Ecology and Management, 85, 1–7.CrossRefGoogle Scholar
  111. Noss, R. F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4, 335–364.Google Scholar
  112. Ohlson, M., Söderstrom, L., Hörnberg, G., Zackrisson, O., & Hermansson, J. (1997). Habitat qualities versus long-term continuity as determinants of biodiversity in boreal old-growth swamp forests. Biological Conservation, 81, 221–231.CrossRefGoogle Scholar
  113. Oosting, H. J. (1956). The study of plant communities: an introduction to plant ecology. San Francisco: WH Freeman and Co.Google Scholar
  114. Palmer, S. C. F., Mitchel, R. J., Truscott, A.-M., & Welch, D. (2004). Regeneration failure in Atlantic oakwoods: the roles of ungulate grazing and invertebrates. Forest Ecology and Management, 192, 251–265.CrossRefGoogle Scholar
  115. Peterken, G. F. (1996). Natural woodland: ecology and conservation in temperate regions. Cambridge: Cambridge University Press.Google Scholar
  116. Petriccione, B. (2006). Aspects of biological diversity in the CONECOFOR plots. VII. Naturalness and dynamical tendencies in plant communities. Annali dell’Istituto Sperimentale per la Selvicoltura, 30(Supplement 2), 93–96.Google Scholar
  117. Pitkänen, S. (1997). Correlation between stand structure and ground vegetation: an analytical approach. Plant Ecology, 131, 109–126.CrossRefGoogle Scholar
  118. Pitkänen, S. (1998). The use of diversity indices to assess the diversity of vegetation in managed boreal forests. Forest Ecology and Management, 112, 121–137.CrossRefGoogle Scholar
  119. Poulsen, B. O. (2002). Avian richness and abundance in temperate Danish forests: tree variables important to birds and their conservation. Biodiversity and Conservation, 11, 1551–1566.CrossRefGoogle Scholar
  120. Pukkala, T. (2006). Optimising the semi-continuous cover forestry of Finland. Allgemeine Forst- und Jagdzeitung, 177(8/9), 141–149.Google Scholar
  121. Rambo, T. R., & Muir, P. S. (1998a). Forest floor Bryophytes of Psedotsuga menziesii-Tsuga heterophylla stands in Oregon: influences of substrate and overstory. Bryologist, 101, 116–130.Google Scholar
  122. Rambo, T. R., & Muir, P. S. (1998b). Bryophyte species associations with coarse woody debris and stand ages in Oregon. Bryologist, 101, 366–376.Google Scholar
  123. Ratcliffe, P. R., & Peterken, G. F. (1995). The potential for biodiversity in British upland spruce forests. Forest Ecology and Management, 79, 153–160.Google Scholar
  124. Roberts-Pichette, P., & Gillespie, L. (1999). Vegetation monitoring protocols working group of the biodiversity science board of Canada for the ecological monitoring and assessment network. EMAN occasional paper series report no. 9.EMAN Coordinating Office. Canada Centre for Inland Waters. P.O. Box 5050. Burlington, Ontario, Canada. L7R 4A6.Google Scholar
  125. Rolston, H. (1990). Biology and philosophy in Yellowstone. Biology and Philosophy, 5, 241–258.CrossRefGoogle Scholar
  126. Rondeux, J. (1999). La mesure des arbes et des eeoplemens foresteirs (p. 522). Gembloux: Les Presses agronomiques de Bembloux.Google Scholar
  127. Rondeux, J., & Sanchez, C. (2009). Review of indicators and field methods for monitoring biodiversity within National forest inventories. Core variable: Deadwood. Environmental monitoring and assessment. doi  10.1007/s10661-009-0917-6. Published online 05 May 2009. http://www.springerlink.com/content/3mt25l2305u35g38/fulltext.pdf. Accessed Dec 2009.
  128. Rondeux, J., Bertini, R., Bastrup-Birk, A., Corona, P., McRoberts, R. E., Sanchez, C., Ståhl, G., Winter, S., & Chirici. G. (submitted). Assessing deadwood using harmonised national forest inventory data. Forest Science.Google Scholar
  129. Rondeux, J., Puissant, T., & Sanchez, C. (2005). Methodology used in the southern Belgium’s forest, Inventory for the assessment of ground vegetation, deadwood and stand structure. Country report for forest focus – Common project. http://www.resgeom.slu.se/resana/projekt/common/documents.htm. Accessed Mar 2009.
  130. Šaudytė, S., Karazihja, S., & Belova, O. (2005). An approach to assessment of naturalness for forest stands in Lithuania. Baltic Forestry, 11(1), 39–45.Google Scholar
  131. Scherzinger, W. (1966). Naturschutz im Wald (p. 447). Stuttgart: Qualitätsziele einer dynamischen Waldentwicklung.Google Scholar
  132. Schieler, K., Hauk, E. (2001). Instruktion für die Feldarbeit, Österreichische Waldinventur 2000/2002 Dienstanweisung FBVA, 99–101. http://web.bfw.ac.at/700/pdf/da_ges_neu.pdf. Accessed Mar 2006.
  133. Scholes, R. J., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434, 45–49.Google Scholar
  134. Schulte, L. A., Mitchell, R. J., Hunter, M. L., Franklin, J. F., McIntyre, R. K., & Palik, B. J. (2006). Evaluating the conceptual tools for forest biodiversity conservation and their implementation in the U.S. Forest Ecology and Management, 232, 1–3.CrossRefGoogle Scholar
  135. Schulze, E. D., & Mooney, H. A. (1994). Ecosystem function of biodiversity: a summary. In E. D. Schulze & H. A. Mooney (Eds.), Biodiversity and ecosystem function (pp. 497–510). Berlin: Springer-Verlag.Google Scholar
  136. Schumacher, H. (2006). Zum Einfluss forstlicher Bewirtschaftung auf die Avifauna von Rotbuchenwäldern im nordostdeutschen Tiefland. Göttingen: Cuvillier Verlag.Google Scholar
  137. Siipilehto, J., & Siitonen, J. (2004). Degree of previous cutting in explaining the differences in diameter distributions between mature managed and natural Norway spruce forests. Silva Fennica, 38(4), 425–435.Google Scholar
  138. Siitonen, J. (2001). Forest management, coaose woody debris and saproxylic organisms: Fennoscandian boreal forest as an example. Ecological Bulletin, 49, 11–41.Google Scholar
  139. Smith, P. G. R., & Theberge, J. B. (1987). Evaluating natural areas using multiple criteria: Theory and practice. Environmental Management, 11(4), 447–460.CrossRefGoogle Scholar
  140. Smith, G., Gittings, T., Wilson, M., French, L., Oxbrough, A., O’Donoghue, S., Pithon, J., O’Donnell, V., McKee, A., Iremonger, S., O’Halloran, J., Kelly, D., Mitchell, F., Giller, P., & Kelly, M. (2005). BIOFOREST. Assessment of biodiversity at different stages of the forest cycle. Final report, Feb 2005.Google Scholar
  141. Soulé, M. E. (1985). What is conservation biology? Bioscience, 35(11), 727–734.CrossRefGoogle Scholar
  142. Stokland, J. N., Tomter, S. M., & Söderberg, U. (2004). Development of deadwood indicators for biodiversity monitoring: experiences from Scandinavia. In: Monitoring and indicators of forest biodiversity in Europe-From ideas to operationality. European Forest Institute Proceedings, 51, 207–226.Google Scholar
  143. Sukopp, H., Hejný, S., & Kovarik, I. (Eds.). (1990). Urban ecology. Plants and plant communities in urban environments. The Hague: SPB Academic Publications.Google Scholar
  144. Tardif, J., & Bergeron, Y. (1999). Population dynamics of Fraxinus nigra in response to flood-level variations in North-western Quebec. Ecological Monographs, 69(1), 107–125.Google Scholar
  145. Thimonier, A., Keller, W., Dupouey, J. L. (2003). Nitrogen and ground vegetation. http://www.wsl.ch/forest/risks/projects/nitrogen/. Accessed Mar 2008.
  146. Trass, H., Vellak, K., & Ingerpuu, N. (1999). Floristical and ecological properties for identifying of primeval forests in Estonia. Annales Botanici Fennici, 36, 67–80.Google Scholar
  147. United Nations Economic Commission for Europe and United Nations Food and Agriculture Organization (UN/ECE-FAO) (2000). Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand: Main report. United Nations Publication GE.00-21547. Geneva, Switzerland. pp. 443.Google Scholar
  148. United Nations Environment Programme (UNEP) (2001). Indicators and environmental impact assessment: Designing national-level monitoring and indicator programmes, UNEP/CBD/SBSTTA/7/12, Subsidiary body on scientific, technical and technological advice. http://www.biodiv.org/doc/meetings/sbstta/sbstta-07/official/sbstta-07-12-en.pdf. Accessed Mar 2009.
  149. Uotila, A., Kouki, J., Kontkanen, H., & Pulkkinen, P. (2002). Assessing the naturalness of boreal forests in eastern Fennoscandia. Forest Ecology and Management, 161, 257–277.CrossRefGoogle Scholar
  150. Usher, M. B. (1986). Wildlife conservation evaluation: attributes, criteria and values. In M. D. Usher (Ed.), Wildlife conservation evaluation: attributes, criteria and values (pp. 1–69). Cambridge: Chapman and Hall.Google Scholar
  151. von Oheimb, G., Westphal, C., Tempel, H., & Härdtle, W. (2005). Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). Forest Ecology and Management, 212, 253–263.CrossRefGoogle Scholar
  152. Westphal, C., Tremer, N., von Oheimb, G., Hansen, J., von Gadow, H., & Härdtle, W. (2006). Is the reverse J-shaped distribution universally applicable in European virgin beech forests? Forest Ecology and Management, 223, 75–83.CrossRefGoogle Scholar
  153. Wilson, S. M., Pyatt, D. G., Malcolm, D. C., & Connolly, T. (2001). The use of ground vegetation and humus type as indicators of soil nutrient regime for an ecological site classification of British forests. Forest Ecology and Management, 140(2/3), 101–116.CrossRefGoogle Scholar
  154. Winter, S. (2006). Naturnähe-Indikatoren für Tiefland-Buchenwälder. Indicators for naturalness of lowland beech forests. Forstarchiv, 77(3), 94–101.Google Scholar
  155. Winter, S., & Möller, G. C. (2008). Microhabitats in lowland beech forests as monitoring tool for nature conservation. Forest Ecology and Management, 255, 1251–1261.CrossRefGoogle Scholar
  156. Winter, S., Flade, M., Schumacher, H., Kerstan, E., & Möller, G. (2005). The importance of near-natural stand structures for the biocoenosis of lowland beech forests. Forest, Snow and Landscape Research, 79(1/2), 127–144.Google Scholar
  157. Woodley, J., Kay, J., & Francis, G. (Eds.). (1993). Ecological integrity and the management of ecosystems. Delray Beach: St Lucie Press.Google Scholar
  158. Willoughby, I., Jinks, R., Gosling, P., & Kerr, G. (2004). Creating new broadleaved woodland by direct seeding. Forestry commission practice guide (p. 32). Edinburgh: Forestry Commission.Google Scholar
  159. World Wildlife Fund (WWF) (2004). Deadwood – Living forest. The importance of veteran trees and deadwood to biodiversity. WWF report. Oct 2004. pp. 19.Google Scholar
  160. Zerbe, S., & Kempa, D. (2005). Waldumbau und Biodiversität. Unterschiedliche forstliche Entwicklungsziele und deren Auswirkungen auf die biologische Vielfalt. Naturschutz und Landschaftsplanung, 37(4), 106–114.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ronald E. McRoberts
    • 1
    Email author
  • Gherardo Chirici
    • 2
  • Susanne Winter
    • 3
  • Anna Barbati
    • 4
  • Piermaria Corona
    • 4
  • Marco Marchetti
    • 2
  • Elmar Hauk
    • 5
  • Urs-Beat Brändli
    • 6
  • Jana Beranova
    • 7
  • Jacques Rondeux
    • 8
  • Christine Sanchez
    • 8
  • Roberta Bertini
    • 9
  • Nadia Barsoum
    • 10
  • Iciar Alberdi Asensio
    • 11
  • Sonia Condés
    • 12
  • Santiago Saura
    • 12
  • Stefan Neagu
    • 13
  • Catherine Cluzeau
    • 14
  • Nabila Hamza
    • 14
  1. 1.Forest Inventory and Analysis, Northern Research StationUSDA Forest ServiceWashingtonUSA
  2. 2.Università degli Studi del MoliseMoliseItaly
  3. 3.Department für Ökologie und Studienfakultät für Forstwissenschaft und RessourcenmanagementTechnische Universität MünchenMünchenGermany
  4. 4.Università degli Studi della TusciaViterboItaly
  5. 5.BFW, Federal Research and Training Centre for Forests, Natural Hazards and LandscapeViennaAustria
  6. 6.Swiss Federal Institute for Forest, Snow and Landscape Research (WSW),Schweizerisches LandesforstinventarZürichSwitzerland
  7. 7.IFER, Institute of Forest Ecosystem Research LtdJilové u PrahyCzech Republic
  8. 8.Gembloux Agro-Bio TechUniversité de LiègeLiègeBelgium
  9. 9.Università degli Studi di FirenzeFirenzeItaly
  10. 10.Forest Research, Forestry CommissionFarnhamUnited Kingdom
  11. 11.Departamento Sistemas y Recursos Forestales, Centro de Investigación ForestalInstituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
  12. 12.Escuela Técnica Superior de Ingenieros de MontesUniversidad Politécnica de MadridMadridSpain
  13. 13.ICAS, Forest Research and Management InstituteVoluntariRomania
  14. 14.IFN, French National Forest InventoryBordeauxFrance

Personalised recommendations