On Husserl’s Mathematical Apprenticeship and Philosophy of Mathematics

  • Claire Ortiz Hill
Part of the Analecta Husserliana book series (ANHU, volume 80)


Insight into the formative role that Edmund Husserl’s early training in mathematics played in the development of his ideas is fundamental to understanding his philosophy as a whole. Besides shedding light on the genesis of phenomenology, which began to take shape in Husserl’s reflections on the inability of the logic, psychology, mathematics and philosophy of his time to respond to certain onerous questions raised by his earliest attempts to secure radical foundations for arithmetic, understanding Husserl’s ideas about mathematics sheds needed light on a number of other dimensions of his thought that have puzzled and challenged philosophers in this century. For example, this is precisely where many of the clues are to be found that are needed to answer questions of a controversial nature about seemingly enigmatic aspects of his thought, among them questions regarding the nature and evolution of his views on psychologism, on Platonism, on realism, and the relationship between his formal and his transcendental logic.


Logical Investigation Axiomatic System Cardinal Number Philosophical Logic Transcendental Phenomenology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, O., 1930. “The Philosophy of Edmund Husserl”, The Phenomenology of Husserl, Selected Critical Readings, R. O. Elveton (ed.), Chicago: Quadrangle Books, 1970, 40–72.Google Scholar
  2. Bruck, M.,1933. Über das Verhältnis Edmund Husserls zu Franz Brentano. Vornehmlich mit Rücksicht auf Brentanos Psychologie. Würzburg: K. Tritsch.Google Scholar
  3. Cantor, G., 1883. Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Teubner. Cited as appears in Cantor 1932, 165–246.Google Scholar
  4. Cantor, G., 1887/88. “Mitteilungen zur Lehre vom Transfini-ten”, Zeitschrift für Philosophie und philosophische Kritik 91, 81–125; 92, 240–65. Cited as appears in Cantor 1932, 378439. Also published as Cantor 1890.Google Scholar
  5. Cantor, G., 1890. Gesammelte Abhandlungen zur Lehre vom Transfiniten. Halle: C.E.M. Pfeffer. See Cantor 1887/88.Google Scholar
  6. Cantor, G., 1932. Gesammelte Abhandlungen, E. Zermelo (ed.). Berlin: Springer.CrossRefGoogle Scholar
  7. Coffa, A., 1982. “Kant, Bolzano and the Emergence of Logic-ism”, The Journal of Philosophy 74, 679–89. Reprinted in Demopoulos 1995, 29–40.Google Scholar
  8. Dauben, J., 1979. Georg Cantor, His Mathematics and Philosophy of the Infinite. Princeton: Princeton University Press.Google Scholar
  9. Demopoulos, W., 1994. “Frege and the Rigorization of Analysis”, Journal of Philosophical Logic 23, 225–46. Reprinted in Demopoulos 1997, 68–88.Google Scholar
  10. Demopoulos, W., 1997. Frege’s Philosophy of Mathematics. Cambridge MA: Harvard University Press.Google Scholar
  11. Dummett, M., 1981. The Interpretation of Frege’s Philosophy. Cambridge MA: Harvard University Press.Google Scholar
  12. Fo11esdal, D., 1997. “Bolzano’s Legacy”, Grazer philosophische Studien 53, 1–10.CrossRefGoogle Scholar
  13. Frege, G., 1885. “On Formal Theories of Arithmetic”, Collected Papers on Mathematics, Logic, and Philosophy, B. McGuinness (ed.), Oxford: Blackwell 1984, 112–21.Google Scholar
  14. Frege, G., 1892. “Review of Georg Cantor, Zur Lehre vom Transfiniten: Gesammelte Abhandlungen aus der Zeitschrift für Philosophie und philosophische Kritik”, in Frege 1984, 178–81.Google Scholar
  15. Frege, G., 1894. “Review E. G. Husserl’s Philosophy of Arithmetic”, in Frege 1984, 195–209.Google Scholar
  16. Frege, G., 1980a. Philosophical and Mathematical Correspondence, G. Gabriel et al. (eds.). Oxford: Blackwell.Google Scholar
  17. Frege, G., 1980b. Translations from the Philosophical Writings. Oxford: Blackwell, 3rd ed. (1952).Google Scholar
  18. Frege, G., 1984. Collected Papers on Mathematics, Logic and Philosophy, B. McGuinness (ed.). Oxford: Blackwell.Google Scholar
  19. Gerlach, H., 1994. “Es ist keine Seligkeit 13 Jahre lang Privatdocent und Tit. `prof.’ zu sein. Husserls hallesche Jahre 1887 bis 1901”, Husserl in Halle, H. Gerlach and H. Sepp (eds.), Bern: Peter Lang, 15–39.Google Scholar
  20. Gödel, K., 1995a. “Is Mathematics Syntax of Language?”, Collected Works, HI, S. Feferman (ed.), New York: Oxford University Press, 334–62.Google Scholar
  21. Gödel, K., 1995b. “The Modern Development of the Foundations of Mathematics in the Light of Philosophy”, Collected Works, III, S. Feferman (ed.), New York: Oxford University Press, 374–87. The “Introductory Note” by D. F¢illesdal, 364–73.Google Scholar
  22. Grattan-Guinness, I., 1978. “How Russell Discovered His Paradox”, Historia Mathematica 5, 127–37.CrossRefGoogle Scholar
  23. Grattan-Guinness, I., 1980. “Georg Cantor’s Influence on Bertrand Russell”, History and Philosophy of Logic 1, 61–93.CrossRefGoogle Scholar
  24. Haaparanta L. (ed.), 1994. Mind, Meaning and Mathematics, Essays on the Philosophical Views of Husserl and Frege. Dordrecht: Kluwer.Google Scholar
  25. Hallett, M., 1984. Cantorian Set Theory and Limitation of Size. Oxford: Clarendon.Google Scholar
  26. Hilbert, D., 1922. “New Grounding of Mathematics, First Report”, in Mancosu, 198–214.Google Scholar
  27. Hilbert, D., 1925. “On the Infinite”, in Van Heijenoort (ed.), 367–92.Google Scholar
  28. Hilbert, D., 1927. “The Foundations of Mathematics”, in Van Heijenoort (ed.), 464–79.Google Scholar
  29. Hill, C. O., 1991. Word and Object in Husserl, Frege and Russell, the Roots of Twentieth-Century Philosophy. Athens, OH: Ohio University Press.Google Scholar
  30. Hill, C. O., 1994a. “Frege Attacks Husserl and Cantor”, The Monist 77 (3), 347–57. Anthologized in Hill and Rosado Haddock.Google Scholar
  31. Hill, C. O., 1994b. “Husserl and Frege on Substitutivity”, in L. Haaparanta (ed.), 113–40. Anthologized in Hill and Rosado Haddock.Google Scholar
  32. Hill, C. O., 1995a. “Frege’s Letters”, From Dedekind to Gödel, Essays on the Development of the Foundations of Mathematics, J. Hintikka (ed.), Dordrecht: Kluwer, 97–118.Google Scholar
  33. Hill, C. O., 1995b. “Husserl and Hilbert on Completeness”, From Dedekind to Gödel, Essays on the Development of the Foundations of Mathematics, J. Hintikka (ed.), Dordrecht: Kluwer, 143–63. Anthologized in Hill and Rosado Haddock.Google Scholar
  34. Hill, C. O., 1997a. “Did Georg Cantor Influence Edmund Husserl?”, Synthese 113, October, 145–70. Anthologized in Hill and Rosado Haddock.Google Scholar
  35. Hill, C. O., 1997b. Rethinking Identity and Metaphysics, On the Foundations of Analytic Philosophy. New Haven: Yale University Press.Google Scholar
  36. Hill, C. O., 1997c. “The Varied Sorrows of Logical Abstraction”, Axiomathes 1–3, 53–82. Anthologized in Hill and Rosado Haddock.Google Scholar
  37. Hill, C. O., 1998. “From Empirical Psychology to Phenomenology: Husserl on the Brentano Puzzle”, The Brentano Puzzle, R. Poli (ed.), Aldershot: Ashgate, 151–68.Google Scholar
  38. Hill, C. O., 1999. “Abstraction and Idealization in Georg Cantor and Edmund Husserl”, Abstraction and Idealization. Historical and Systematic Studies, Poznan studies in the philosophy of the sciences and the humanities, F. Coniglione et al. (eds.). Amsterdam: Rodopi. Anthologized in Hill and Rosado Haddock.Google Scholar
  39. Hill, C. O., 2000. “Husserl’s Mannigfaltigkeitslehre”. Anthologised in Hill and Rosado Haddock.Google Scholar
  40. Hill, C. O. and G. E. Rosado Haddock, 2000. Husserl or Frege? Meaning, Objectivity, and Mathematics. Chicago: Open Court.Google Scholar
  41. Husserl, E., 1887. “On the Concept of Number”, Husserl: Shorter Works, P. Mc Cormick and F. Elliston (eds.), Notre Dame: University of Notre Dame Press, 1981, 92–120. In German in Husserl, 1970, 289–339.Google Scholar
  42. Husserl, E., 1891. Philosophie der Arithmetik. Halle: Pfeffer. Also published in Husserl, 1970.Google Scholar
  43. Husserl, E., 1900–01. Logical Investigations. New York: Humanities Press, 1970.Google Scholar
  44. Husserl, E., 1905. “Husserl an Brentano, 27. III. 1905”, Briefwechsel, Die Brentanoschule I. Dordrecht: Kluwer, 1994.Google Scholar
  45. Husserl, E., 1906–07. Einleitung in die Logik und Erkenntnistheorie, Husserliana XXIV. The Hague: M. Nijhoff, 1984.Google Scholar
  46. Husserl, E., 1908. Vorlesungen über Bedeutungslehre, Husserliana XXVI. The Hague: M. Nijhoff, 1987.Google Scholar
  47. Husserl, E., 1913. Ideas. General Introduction to Pure Phenomenology. New York: Collier Books, 1962.Google Scholar
  48. Husserl, E., 1917/18. Logik und allgemeine Wissenschaftstheorie, Husserliana XXX. Dordrecht: Kluwer, 1996.CrossRefGoogle Scholar
  49. Husserl, E., 1919. “Recollections of Franz Brentano”, Husserl: Shorter Works, P. McCormick and F. Elliston (eds.), Notre Dame: University of Notre Dame Press, 1981, 342–49. (Also translated by L. McAlister in her The Philosophy of Brentano, London: Duckworth, 1976, 47–55.)Google Scholar
  50. Husserl, E., 1929. Formal and Transcendental Logic. The Hague: M. Nijhoff, 1969.Google Scholar
  51. Husserl, E., 1939. Experience and Judgement. London: Routledge and Kegan Paul, 1973.Google Scholar
  52. Husserl, E., 1970. Philosophie der Arithmetik. Mit Ergänzenden Texten (1890–1901). The Hague: Nijhoff. Introduction by L. Eley.Google Scholar
  53. Husserl, E., 1975. Introduction to the Logical Investigations. The Hague: M. Nijhoff.CrossRefGoogle Scholar
  54. Husserl, E., 1983. Studien zur Arithmetik und Geometrie, Texte aus dem Nachlass (1886–1901), Husserliana X XI. The Hague: M. Nijhoff.CrossRefGoogle Scholar
  55. Husserl, E., 1994. Early Writings in the Philosophy of Logic and Mathematics. Dordrecht: Kluwer.CrossRefGoogle Scholar
  56. Husserl, M., 1988. “Skizze eines Lebensbildes von E. Husserl”, Husserl Studies 5, 105–25.CrossRefGoogle Scholar
  57. Illemann, W., 1932. Husserls vorphänomenologische Philosophie. Leipzig: Hirzel.Google Scholar
  58. Jourdain, P., 1991. “The Development of the Theory of Trans-finite Numbers”, Selected Essays on the History of Set Theory and Logic. Bologna: CLUEB.Google Scholar
  59. Kline, M., 1972. “The Instillation of Rigor in Analysis”, Mathematical Thought from Ancient to Modern Times, Oxford: Oxford University Press, 947–78.Google Scholar
  60. Linke, P., 1947. “Gottlob Frege as Philosopher”, The Brentano Puzzle, R. Poli (ed.), Aldershot: Ashgate: 1998, 45–72.Google Scholar
  61. Mancosu, P., 1998. From Brouwer to Hilbert. New York: Oxford University Press.Google Scholar
  62. Osbom, A., 1934. Edmund Husserl and His Logical Investigations. Cambridge, MA. (2nd ed.), 1949.Google Scholar
  63. Peckhaus, V., 1990. Hilbertsprogramm und kritische Philosophie, das Göttingen Modell interdiziplinärer Zusammenarbeit zwischen Mathematik und Philosophie. Göttingen: Vandenhoeck and Ruprecht.Google Scholar
  64. Reid, C., 1970. Hilbert. New York: Springer.CrossRefGoogle Scholar
  65. Reid, C., 1976. Courant in Göttingen and New York. New York: Springer.Google Scholar
  66. Rosado Haddock, G., 1973. Edmund Husserls Philosophie der Logik und Mathematik im Lichte der Gegenwärtigen Logik und Grundlagenforschung. Bonn: Doctoral Thesis.Google Scholar
  67. Russell, B., 1903. Principles of Mathematics. London: Norton. Russell, B., 1959. My Philosophical Development. London: Allen and Unwin.Google Scholar
  68. Schmit, R., 1981. Husserls Philosophie der Mathematik: platonische und konstructivische Moment in Husserls Mathematik Begriff. Bonn: Bouvier Verlag.Google Scholar
  69. Schuhmann, K., 1977. Husserl-Chronik. The Hague: M. Nijhoff.CrossRefGoogle Scholar
  70. Sebestik, J., 1992. Logique et mathématique chez Bernard Bolzano. Paris: Vrin.Google Scholar
  71. Sluga, H., 1980. Gottlob Frege. London: Routledge and Kegan Paul.Google Scholar
  72. Smith, B., 1994. Austrian Philosophy: the Legacy of Franz Brentano. Chicago: Open Court.Google Scholar
  73. Tieszen, R., 1989. Mathematical Intuition: Phenomenology and Mathematical Knowledge. Dordrecht: Kluwer.CrossRefGoogle Scholar
  74. Tieszen, R., 1992. “Kurt Gödel and Phenomenology”, Philosophy of Science 59, 176–94.CrossRefGoogle Scholar
  75. Tieszen, R., 1994. “Mathematical Realism and Gödel’s Incompleteness Theorems”, Philosophia Mathematica 3: 2, 177–201.CrossRefGoogle Scholar
  76. Tieszen, R., 1998a. “Gödel’s Philosophical Remarks on Logic and Mathematics: Critical Notice of Kurt Gödel: Collected Works, vols. I, II, III”, Mind 107, 219–32.CrossRefGoogle Scholar
  77. Tieszen, R., 1998b. “Gödel’s Path from the Incompleteness Theorems (1931) to Phenomenology (1961)”, The Bulletin of Symbolic Logic 4: 2, 181–203.CrossRefGoogle Scholar
  78. Van Heijenoort, J. (ed.), 1967, From Frege to Godel. A Source Book in Mathematical Logic, 1879–1931. Cambridge, MA: Harvard University Press.Google Scholar
  79. Wang, H., 1986. Beyond Analytic Philosophy, Doing Justice to What We Know. Cambridge, MA: MIT Press.Google Scholar
  80. Wang, H., 1987. Reflections on Kurt Gödel. Cambridge, MA: MIT Press.Google Scholar
  81. Wang, H., 1996. A Logical Journey, From Gödel to Philosophy. Cambridge, MA: MIT Press.Google Scholar
  82. Willard, D., 1980. “Husserl on a Logic That Failed”, The Philosophical Review 89: 1 (January), 46–64.Google Scholar
  83. Willard, D., 1984. Logic and the Objectivity of Knowledge. Athens, OH: Ohio University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Claire Ortiz Hill
    • 1
  1. 1.ParisFrance

Personalised recommendations