Skip to main content

MDS as an Autoimmune Process

  • Chapter
  • First Online:
The Myelodysplastic Syndromes

Abstract

The Myelodysplastic Syndromes (MDS) represent a markedly heterogeneous group of haematopoietic stem cell disorders, with a wide diversity in outcome. Whilst some cases of MDS carry an indolent course with prolonged survival, others may progress rapidly to acute myeloid leukaemia (AML) and death. The pathophysiology of MDS remains poorly understood, in part due to the heterogeneity of the disease. Several clonal karyotypic and genetic mutations are reported in MDS and likely to play a key role in its pathogenesis. Moreover, defects in immune responses, both innate and adaptive, together with, or in the absence of, altered cytokine/chemokine profiles are integral to the disease process. It is hypothesised that a combination of environmental factors, genetic background and autoimmune responses play role in the pathogenesis of MDS (Fig. 9.1). This chapter will focus on the immunological aspects of MDS and provide the clinical evidence to support MDS as an autoimmune disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamblin TJ (1996) Immunological abnormalities in myelodysplastic syndromes. Semin Hematol 33(2):150–162

    PubMed  CAS  Google Scholar 

  2. Enright H et al (1995) Paraneoplastic autoimmune phenomena in patients with myelodysplastic syndromes: response to immunosuppressive therapy. Br J Haematol 91(2):403–408

    Article  PubMed  CAS  Google Scholar 

  3. Castro M et al (1991) Rheumatic manifestations in myelodysplastic syndromes. J Rheumatol 18(5):721–727

    PubMed  CAS  Google Scholar 

  4. Billstrom R et al (1995) Immune-mediated complications in patients with myelodysplastic syndromes—clinical and cytogenetic features. Eur J Haematol 55(1):42–48

    Article  PubMed  CAS  Google Scholar 

  5. Okamoto T et al (1997) Correlation between immunological abnormalities and prognosis in myelodysplastic syndrome patients. Int J Hematol 66(3):345–351

    Article  PubMed  CAS  Google Scholar 

  6. O’Donnell BF, Williams HC, Carr R (1995) Myelodysplastic syndrome presenting as cutaneous vasculitis. Clin Exp Dermatol 20(5):439–442

    Article  Google Scholar 

  7. Saif MW, Hopkins JL, Gore SD (2002) Autoimmune phenomena in patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Lymphoma 43(11):2083–2092

    Article  PubMed  Google Scholar 

  8. Mufti GJ et al (1986) Immunological abnormalities in myelodysplastic syndromes. I. Serum immunoglobulins and autoantibodies. Br J Haematol 63(1):143–147

    Article  PubMed  CAS  Google Scholar 

  9. Kook H et al (2001) Increased cytotoxic T cells with effector phenotype in aplastic anemia and myelodysplasia. Exp Hematol 29(11):1270–1277

    Article  PubMed  CAS  Google Scholar 

  10. Melenhorst JJ et al (2002) Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br J Haematol 119(1):97–105

    Article  PubMed  CAS  Google Scholar 

  11. Epling-Burnette PK et al (2007) Prevalence and clinical association of clonal T-cell expansions in myelodysplastic syndrome. Leukemia 21(4):659–667

    PubMed  CAS  Google Scholar 

  12. Culligan DJ et al (1992) Clonal lymphocytes are detectable in only some cases of MDS. Br J Haematol 81(3):346–352

    Article  PubMed  CAS  Google Scholar 

  13. Epperson DE et al (2001) Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res 25(12):1075–1083

    Article  PubMed  CAS  Google Scholar 

  14. Matsutani T et al (2003) Determination of T-cell receptors of clonal CD8-positive T-cells in myelodysplastic syndrome with erythroid hypoplasia. Leuk Res 27(4):305–312

    Article  PubMed  CAS  Google Scholar 

  15. Wlodarski MW et al (2006) Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood 108(8):2632–2641

    Article  PubMed  CAS  Google Scholar 

  16. Risitano AM et al (2002) Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry. Blood 100(1):178–183

    Article  PubMed  CAS  Google Scholar 

  17. O’Keefe CL et al (2004) Molecular analysis of TCR clonotypes in LGL: a clonal model for polyclonal responses. J Immunol 172(3):1960–1969

    PubMed  Google Scholar 

  18. Hong J et al (1999) A common TCR V-D-J sequence in V beta 13.1 T cells recognizing an immunodominant peptide of myelin basic protein in multiple sclerosis. J Immunol 163(6):3530–3538

    PubMed  CAS  Google Scholar 

  19. Mima T et al (1999) Dominant and shared T cell receptor beta chain variable regions of T cells inducing synovial hyperplasia in rheumatoid arthritis. Biochem Biophys Res Commun 263(1):172–180

    Article  PubMed  CAS  Google Scholar 

  20. Kochenderfer JN et al (2002) Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood 100(10):3639–3645

    Article  PubMed  CAS  Google Scholar 

  21. Raza A (1998) Hypothesis: myelodysplastic syndromes may have a viral etiology. Int J Hematol 68(3):245–256

    Article  PubMed  CAS  Google Scholar 

  22. Abbas AK (2007) Cellular and molecular immunology, 6th edn. Saunders, Philadelphia

    Google Scholar 

  23. Kordasti SY et al (2009) IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol 145(1):64–72

    Article  PubMed  CAS  Google Scholar 

  24. Gershon RK, Kondo K (1971) Infectious immunological tolerance. Immunology 21(6):903–914

    PubMed  CAS  Google Scholar 

  25. Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 151(1):69–80

    Article  PubMed  CAS  Google Scholar 

  26. Sakaguchi S et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    PubMed  CAS  Google Scholar 

  27. Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222:129–144

    Article  PubMed  CAS  Google Scholar 

  28. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8(7):523–532

    Article  PubMed  CAS  Google Scholar 

  29. Kordasti SY et al (2007) CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110(3):847–850

    Article  PubMed  CAS  Google Scholar 

  30. Kotsianidis I et al (2009) Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia 23(3):510–518

    Article  PubMed  CAS  Google Scholar 

  31. Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8(5):337–348

    Article  PubMed  CAS  Google Scholar 

  32. Chen Z, O’Shea JJ (2008) Th17 cells: a new fate for differentiating helper T cells. Immunol Res 41(2):87–102

    Article  PubMed  CAS  Google Scholar 

  33. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2):139–145

    Article  PubMed  CAS  Google Scholar 

  34. Yen D et al (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116(5):1310–1316

    Article  PubMed  CAS  Google Scholar 

  35. Cho ML et al (2006) STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 176(9):5652–5661

    PubMed  CAS  Google Scholar 

  36. Nakae S et al (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 100(10):5986–5990

    Article  PubMed  CAS  Google Scholar 

  37. Komiyama Y et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177(1):566–573

    PubMed  CAS  Google Scholar 

  38. Nakae S et al (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171(11):6173–6177

    PubMed  CAS  Google Scholar 

  39. Afzali B et al (2007) The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol 148(1):32–46

    Article  PubMed  CAS  Google Scholar 

  40. Annunziato F et al (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    Article  PubMed  CAS  Google Scholar 

  41. van Beelen AJ et al (2007) Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27(4):660–669

    Article  PubMed  CAS  Google Scholar 

  42. Kiladjian JJ et al (2006) Cytolytic function and survival of natural killer cells are severely altered in myelodysplastic syndromes. Leukemia 20(3):463–470

    Article  PubMed  CAS  Google Scholar 

  43. Epling-Burnette PK et al (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109(11):4816–4824

    Article  PubMed  CAS  Google Scholar 

  44. Chamuleau ME et al (2009) Immune mediated autologous cytotoxicity against hematopoietic precursor cells in patients with myelodysplastic syndrome. Haematologica 94(4):496–506

    Article  PubMed  CAS  Google Scholar 

  45. Meers S et al (2007) Monocytes are activated in patients with myelodysplastic syndromes and can contribute to bone marrow failure through CD40-CD40L interactions with T helper cells. Leukemia 21(12):2411–2419

    Article  PubMed  CAS  Google Scholar 

  46. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31(2):184–196

    Article  PubMed  CAS  Google Scholar 

  47. Band H et al (1990) Recognition of mycobacterial antigens by gamma delta T cells. Res Immunol 141(7):645–651

    Article  PubMed  CAS  Google Scholar 

  48. Kunzmann V et al (2000) Stimulation of gammadelta T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 96(2):384–392

    PubMed  CAS  Google Scholar 

  49. Kunzmann V, Wilhelm M (2005) Anti-lymphoma effect of gammadelta T cells. Leuk Lymphoma 46(5):671–680

    Article  PubMed  CAS  Google Scholar 

  50. Kiladjian JJ et al (2008) Activation of cytotoxic T-cell receptor gammadelta T lymphocytes in response to specific stimulation in myelodysplastic syndromes. Haematologica 93(3):381–389

    Article  PubMed  CAS  Google Scholar 

  51. Yoshida Y (1993) Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 7(1):144–146

    PubMed  CAS  Google Scholar 

  52. Raza A et al (1995) Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 86(1):268–276

    PubMed  CAS  Google Scholar 

  53. Bouscary D et al (1997) Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 11(6):839–845

    Article  PubMed  CAS  Google Scholar 

  54. Rajapaksa R et al (1996) Altered oncoprotein expression and apoptosis in myelodysplastic syndrome marrow cells. Blood 88(11):4275–4287

    PubMed  CAS  Google Scholar 

  55. Parker JE, Mufti GJ (1998) Ineffective haemopoiesis and apoptosis in myelodysplastic syndromes. Br J Haematol 101(2):220–230

    Article  PubMed  CAS  Google Scholar 

  56. Mundle S et al (1999) The relative extent and propensity of CD34+ vs. CD34 cells to undergo apoptosis in myelodysplastic marrows. Int J Hematol 69(3):152–159

    PubMed  CAS  Google Scholar 

  57. Lepelley P et al (1998) Fas/APO-1 (CD95) expression in myelodysplastic syndromes. Leuk Lymphoma 30(3–4):307–312

    PubMed  CAS  Google Scholar 

  58. Mundle SD et al (1999) Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Lett 140(1–2):201–207

    Article  PubMed  CAS  Google Scholar 

  59. Kitagawa M et al (1998) Localization of Fas and Fas ligand in bone marrow cells demonstrating myelodysplasia. Leukemia 12(4):486–492

    Article  PubMed  CAS  Google Scholar 

  60. Sawanobori M et al (2003) Expression of TNF receptors and related signaling molecules in the bone marrow from patients with myelodysplastic syndromes. Leuk Res 27(7):583–591

    Article  PubMed  CAS  Google Scholar 

  61. Maurer AB et al (1993) Restoration of impaired cytokine secretion from monocytes of patients with myelodysplastic syndromes after in vivo treatment with GM-CSF or IL-3. Leukemia 7(11):1728–1733

    PubMed  CAS  Google Scholar 

  62. Bowen D et al (1993) Serum stem cell factor concentration in patients with myelodysplastic syndromes. Br J Haematol 85(1):63–66

    Article  PubMed  CAS  Google Scholar 

  63. Fontenay-Roupie M et al (1999) Ineffective erythropoiesis in myelodysplastic syndromes: correlation with Fas expression but not with lack of erythropoietin receptor signal transduction. Br J Haematol 106(2):464–473

    Article  PubMed  CAS  Google Scholar 

  64. Aizawa S et al (1999) Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leuk Res 23(3):239–246

    Article  PubMed  CAS  Google Scholar 

  65. Bagby GC Jr, Gabourel JD, Linman JW (1980) Glucocorticoid therapy in the preleukemic syndrome (hemopoietic dysplasia): identification of responsive patients using in-vitro techniques. Ann Intern Med 92(1):55–58

    PubMed  Google Scholar 

  66. Motoji T et al (1990) Successful treatment of refractory anemia with high-dose methylprednisolone. Am J Hematol 33(1):8–12.

    Article  PubMed  CAS  Google Scholar 

  67. George SW, Newman ED (1992) Seronegative inflammatory arthritis in the myelodysplastic syndromes. Semin Arthritis Rheum 21(6):345–354

    Article  PubMed  CAS  Google Scholar 

  68. Molldrem JJ et al (1997) Antithymocyte globulin for patients with myelodysplastic syndrome. Br J Haematol 99(3):699–705

    Article  PubMed  CAS  Google Scholar 

  69. Killick SB et al (2003) A pilot study of antithymocyte globulin (ATG) in the treatment of patients with ‘low-risk’ myelodysplasia. Br J Haematol 120(4):679–684

    Article  PubMed  CAS  Google Scholar 

  70. Tichelli A et al (1988) Antilymphocyte globulin for myelodysplastic syndrome. Br J Haematol 68(1):139–140

    Article  PubMed  CAS  Google Scholar 

  71. Steensma DP et al (2003) Antithymocyte globulin has limited efficacy and substantial toxicity in unselected anemic patients with myelodysplastic syndrome. Blood 101(6):2156–2158

    Article  PubMed  CAS  Google Scholar 

  72. Yazji S et al (2003) Antithymocyte globulin (ATG)-based therapy in patients with myelodysplastic syndromes. Leukemia 17(11):2101–2106

    Article  PubMed  CAS  Google Scholar 

  73. Aivado M et al (2002) Favourable response to antithymocyte or antilymphocyte globulin in low-risk myelodysplastic syndrome patients with a ‘non-clonal’ pattern of X-chromosome inactivation in bone marrow cells. Eur J Haematol 68(4):210–216

    Article  PubMed  CAS  Google Scholar 

  74. Molldrem JJ et al (2002) Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann Intern Med 137(3):156–163

    PubMed  Google Scholar 

  75. Saunthararajah Y et al (2003) A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood 102(8):3025–3027

    Article  PubMed  CAS  Google Scholar 

  76. Saunthararajah Y et al (2002) HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 100(5):1570–1574

    PubMed  CAS  Google Scholar 

  77. Sloand EM et al (2008) Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol 26(15):2505–2511

    Article  PubMed  Google Scholar 

  78. Lim ZY et al (2007) Low IPSS score and bone marrow hypocellularity in MDS patients predict hematological responses to antithymocyte globulin. Leukemia 21(7):1436–1441

    Article  PubMed  CAS  Google Scholar 

  79. Molldrem JJ et al (1998) Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor Vbeta profiles. Br J Haematol 102(5):1314–1322

    Article  PubMed  CAS  Google Scholar 

  80. Remberger M et al (2002) Association between pretransplant thymoglobulin and reduced non-relapse mortality rate after marrow transplantation from unrelated donors. Bone Marrow Transplant 29(5):391–397

    Article  PubMed  CAS  Google Scholar 

  81. Kottaridis PD et al (2000) In vivo CAMPATH-1H prevents graft-versus-host disease following nonmyeloablative stem cell transplantation. Blood 96(7):2419–2425

    PubMed  CAS  Google Scholar 

  82. Kolb HJ et al (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood 86(5):2041–2050

    PubMed  CAS  Google Scholar 

  83. Depil S et al (2004) Donor lymphocyte infusion to treat relapse after allogeneic bone marrow transplantation for myelodysplastic syndrome. Bone Marrow Transplant 33(5):531–534

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ingram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ingram, W., Kordasti, Y., Mufti, G. (2011). MDS as an Autoimmune Process. In: Várkonyi, J. (eds) The Myelodysplastic Syndromes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0440-4_9

Download citation

Publish with us

Policies and ethics