Skip to main content

Turbulent Combustion: Concepts, Governing Equations and Modeling Strategies

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

The numerical modeling of turbulent combustion problems is based on the solution of a set of conservation equations for momentum and scalars, plus additional auxiliary equations. These equations have very well-defined foundations in their instantaneous and spatially-resolved forms and they represent a myriad of problems that are encountered in a very broad range of applications. However, their practical solution poses important problems. First, models of turbulent combustion problems form an important subset of models for turbulent flows. Second, the reacting nature of turbulent combustion flows imposes additional challenges of resolution of all relevant scales that govern turbulent combustion and closure for scalars. This chapter attempts to review the governing equations from the perspective of modern solution techniques, which take root in some of the classical strategies adopted to address turbulent combustion modeling. We also attempt to outline common themes and to provide an outlook where present efforts are heading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, J.B., Day, M.S., Shepherd, I.G., Johnson, M.R., Cheng, R.K., Grcar, J.F., Beckner, V.E., Lijewski, M.J.: Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Nat. Acad. Sci. 102, 10006–10011 (2005)

    Article  Google Scholar 

  2. Bell, J.B., Day, M.S., Grcar, J.F., Lijewski, M.J., Driscoll, J.F., Filatyev, S.A.: Numerical simulation of laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31, 1299–1307 (2009)

    Article  Google Scholar 

  3. Bilger, R.W.: The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475–488 (1988)

    Google Scholar 

  4. Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion research, Proc. Combust. Inst. 30, 21–42 (2005)

    Article  Google Scholar 

  5. Brown, P.N., Byrne, G.D., Hindmarsh, A.C.: VODE: A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, J.-Y.: A General procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol. 57, 89–94 (1988)

    Article  Google Scholar 

  7. Chen, J.H., Choudhary A., de Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S., Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhrszki, N., Sankaran, R., Shende, S., and Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Discovery 2, 015001 (2009)

    Article  Google Scholar 

  8. Dixon-Lewis, G.: A FORTRAN computer code for the evaluation of gas-phase multicomponent transport properties. Proc. Royal Soc. A304, 111–134 (1968)

    Article  Google Scholar 

  9. Dixon-Lewis, G.: Structure of laminar flames Proc. Combust. Inst. 23, 305–324 (1990)

    Google Scholar 

  10. Dubois, T., Jauberteau, F., Temam, R.: Dynamic multilevel methods and the numerical simulation of turbulence, Cambridge University Press (1999)

    Google Scholar 

  11. Echekki, T., Chen, J.H.: Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106, 184–202 (1996)

    Article  Google Scholar 

  12. Eggenspieler, G., Menon, S.: Combustion and emission modelling near lean blow-out in a gas turbine engine. Prog. Comput. Fluid Dyn. 5 281–297 (2005)

    Article  MATH  Google Scholar 

  13. Ern, A., Giovangigli, V.: EGLIB: A general purpose FORTRAN library for multicomponent transport property evaluations, Software Manual (1986)

    Google Scholar 

  14. Favre, A.: Equations des gas turbulents compressible. J. Mec. 4, 361–390 (1965)

    Google Scholar 

  15. Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids 5, 1282–1284 (1993)

    Article  MATH  Google Scholar 

  16. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  17. Hawkes, E.R., Sankaran, R., Sutherland, J.C. and Chen, J.H.: Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31,1291–1298 (2007)

    Article  Google Scholar 

  18. Jones, W.P.: Models for turbulent flows with variable density and combustion. In Prediction Methods for Turbulent Flows, Kollman, W. ed., pp. 379–421. Hemisphere (1980)

    Google Scholar 

  19. Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A.: A FORTRAN computer code package for the evaluation of gas-phase multicomponent transport properties, SAND86-8246, Sandia National Laboratories (1986)

    Google Scholar 

  20. Kee, R.J., Rupley, F.M., and Miller, J.A.: Chemkin-II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Sandia National Laboratories Report No. SAND 89–8009 (1989)

    Google Scholar 

  21. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice, Wiley-Interscience, New Jersey (2003)

    Book  Google Scholar 

  22. Kim, S.H., Pitsch, H.: Mixing characteristics and structure of a turbulent jet diffusion flame stabilized on a bluff-body. Phys. Fluids 18, 075103 (2006)

    Article  Google Scholar 

  23. Lam, S.H., Goussis, D.A.: Understanding complex chemical kinetics with the computational singular perturbations. Proc. Combust. Inst. 22, 931–941 (1988)

    Google Scholar 

  24. Law, C.K.: On the applicability of direct relation graph to the reduction of of reaction mechanisms. Combust. Flame 146, 472–483 (2006)

    Article  Google Scholar 

  25. Law, C.K.: Combustion Physics, Cambridge University Press, New York (2006)

    Book  Google Scholar 

  26. Law, C.K.: Combustion at a crossroads: Status and prospects. Proc. Combust. Inst. 31, 1–29 (2006)

    Article  Google Scholar 

  27. Libby, P.A., Williams, F.A.: Turbulent Reacting Flows, Springer-Verlag, Heidelberg (1980)

    MATH  Google Scholar 

  28. Libby, P.A., Williams, F.A.: Turbulent Reacting Flows, Academic Press, London (1994)

    MATH  Google Scholar 

  29. Lu, T.F., Law, C.K.: Toward accommmodating realistic chemistry in large-scale computations. Prog. Energy Combust. Sci. 35, 192–215 (2009)

    Article  Google Scholar 

  30. Lundgren, T.S.: Distribution of functions in the statistical theory of turbulence. Phys. Fluids 10, 969 (1967)

    Article  Google Scholar 

  31. Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16, 719–729 (1976)

    Google Scholar 

  32. Mizobuchi, Y., Sinjo, J., Ogawa, S., Takeno, T.: A numerical study of the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611–619 (2005)

    Article  Google Scholar 

  33. Mizobuchi, Y., Tachibana, S., Shinjo, J., Ogawa, S., Takeno, T.: A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29, 2009–2015 (2002)

    Article  Google Scholar 

  34. Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 2746–2757 (1991)

    Article  MATH  Google Scholar 

  35. Navarrao-Martinez, S., Kronenburg, A., Di Mare, F., Conditional moment closure for large-eddy simulations. Flow Turbul. Combust. 75, 245–274 (2005)

    Article  Google Scholar 

  36. McIlroy, A., McRae, G., Sick, V., Siebers, D.L., Westbrook, C.K., Smith, P.J., Taatjes, C., Trouve, A., Wagner, A.E., Rohlfing, E., Manley, D., Tully, F., Hilderbrandt, R., Green, W., Marceau, D., O’Neal, J., Lyday, M., Cebulski, F., Garcia, T.R., Strong, D., Basic research needs for clean and efficient combustion of 21st century transportation fuels. Department of Energy Office of Science Report (2006)

    Google Scholar 

  37. Patel, N., Kirtas, M., Sankaran, V., Menon, S.: Simulation of spray combustion in a lean-direct injection combustor. Proc. Combust. Inst. 31, 2327–2334 (2007)

    Article  Google Scholar 

  38. Paul, P.H.: DFRM: A new package for the evaluation of gas-phase transport properties, SAND98-8203, Sandia National Laboratories (1997)

    Google Scholar 

  39. Peters, N.: Local quenching due to flame stretch and non-premixed turbulent combustion. Combust. Sci. Techol. 30, 1–17 (1983)

    Article  Google Scholar 

  40. Peters, N.: Turbulent Combustion, Cambridge University Press, UK (2000)

    Book  MATH  Google Scholar 

  41. Petzold, L.R., A description of dassl: A differential/algebraic system solver, SAND82-8637, Sandia National Laboratories (1982)

    Google Scholar 

  42. Pitsch, H., Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  43. Poinsot, T., Candel, S., Trouve A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)

    Article  Google Scholar 

  44. Poinsot, T., Veynante, D., Theoretical and Numerical Combustion, Second Ed., RT Edwards (2005)

    Google Scholar 

  45. Pope, S.B.: The statistical theory of turbulent flames. Philos. Trans., Roy. Soc. London Ser. A 291, 529–568 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  46. Pope, S.B.: Computations of turbulent combustion: Progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)

    Google Scholar 

  47. Pope, S.B., Maas, U.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992)

    Article  Google Scholar 

  48. Pope, S.B., Ren, Z.: Efficient implementation of chemistry in computational combustion. Flow Turbul. Combust. 82, 437–453 (2009)

    Article  MATH  Google Scholar 

  49. Selle, L, Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137, 489–505 (2004)

    Article  Google Scholar 

  50. Smooke, M.D., Giovangigli, V.: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames. Lecture Notes in Physics, Springer-Verlag, Berlin 384 (1991)

    Book  Google Scholar 

  51. Spalding, D.B.: Mixing and chemical reaction in steady confined turbulent flames Proc. Combust. Inst. 13, 649–657 (1971)

    Google Scholar 

  52. Triantafyllidis, A., Mastorakos, E., Eggels, R.L.G.M.: Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure. Combust. Flame 156, 2328–2345 (2009)

    Article  Google Scholar 

  53. Valorani, M., Paolucci, S.: The G-scheme: A framework for multi-scale adaptive model reduction. J. Comput. Phys. 228, 4665–4701 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Vervisch, L., Poinsot, T.: Direct numerical simulation of non-premixed turbulent flames. Ann. Rev. Fluid Mech. 30, 655–691 (1998)

    Article  MathSciNet  Google Scholar 

  55. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  56. Warnatz, J.: Calculation of structure of laminar flat flames. 1. Flame velocity of freely propagating ozone decomposition flames. Ber. Bunsenges. Phys. Chem. Phys. 82, 193–200 (1978)

    Google Scholar 

  57. Williams, F.A., Combustion Theory: The Fundamental Theory of Chemically Reacting Flow Systems, Second Ed., Benjamin-Cummings (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Echekki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Echekki, T., Mastorakos, E. (2011). Turbulent Combustion: Concepts, Governing Equations and Modeling Strategies. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_2

Download citation

Publish with us

Policies and ethics