Advertisement

The Heterogeneous Multiscale Methods with Application to Combustion

  • Weinan E 
  • Björn Engquist
  • Yi Sun
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 95)

Abstract

The framework of the heterogeneous multiscale methods (HMM) is briefly reviewed. Both the original HMM and the seamless HMM are discussed. Applications to interface capturing and flame front tracking are presented.

Keywords

Fractional Step Method Microscale Model Front Tracking Method Macroscale Model Heterogeneous Multiscale Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T.J., et al. (eds.) Multiscale and Multiresolution Methods: Theory and Applications, Yosemite Educational Symposium Conf. Proc., 2000, Lecture Notes in Comp. Sci. and Engrg. 20, pp. 3–96. Springer-Verlag, New York (2002) Google Scholar
  3. 3.
    Cheng, L.-T., E, W.: The heterogeneous multiscale method for interface dynamics. In Cheng, S.Y., et al. (eds.) Recent Advances in Scientific Computing and Partial Differential Equations. Contemp. Math. 330, pp. 43–53. Amer. Math. Soc., Providence (2003) Google Scholar
  4. 4.
    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967) zbMATHCrossRefGoogle Scholar
  5. 5.
    Colella, P., Majda, A., Roytburd, V.: Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Statist. Comput. 7, 1059–1080 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Colella, P., Woodward, P.: The piecewise-parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm. Math. Sci. 1, 423–436 (2003) zbMATHMathSciNetGoogle Scholar
  8. 8.
    E, W., Engquist, B.: The heterogeneous multi-scale methods. Comm. Math. Sci. 1, 87–133 (2003) zbMATHMathSciNetGoogle Scholar
  9. 9.
    E, W., Engquist, B.: Multiscale modeling and computation. Notices of the AMS, 50, 1062–1070 (2003) zbMATHMathSciNetGoogle Scholar
  10. 10.
    E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Comm. Comput. Phys. 3, 367–450 (2007) MathSciNetGoogle Scholar
  11. 11.
    E, W., Lu, J.: Seamless multiscale modeling via dynamics on fiber bundles. Comm. Math. Sci. 5, 649–663 (2007) zbMATHMathSciNetGoogle Scholar
  12. 12.
    E, W., Ren, W., Vanden-Eijnden, E.: A general strategy for designing seamless multiscale methods. J. Comput. Phys. 228, 5437–5453 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp. 34, 45–75 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Engquist, B., Tsai, R.: Heterogeneous multiscale method for a class of stiff ODEs. Math. Comp. 74, 1707–1742 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fan, H., Jin, S.: Front motion in muti-dimensional viscous conservation laws with stiff source terms driven by mean curvature and front thickness. Quart. Appl. Math. 61, 701–721 (2003) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Fatkullin, I., Vanden-Eijnden, E.: A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200, 605–638 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Glimm, J., McBryan, O., Menikoff, R., Sharp, D.H.: Front tracking applied to Rayleigh-Taylor instability. SIAM J. Sci. Statist. Comput. 7, 230–251 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Helzel, C., LeVeque, R.J., Warnecke, G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Comm. Math. Sci. 1, 715–762 (2003) zbMATHMathSciNetGoogle Scholar
  20. 20.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser-Verlag, Boston (1990) zbMATHGoogle Scholar
  21. 21.
    LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187–210 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equations. unpublished. Google Scholar
  23. 23.
    Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987) zbMATHGoogle Scholar
  25. 25.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ren, W.: Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Comm. Math. Sci. 5, 1027–1037 (2007) zbMATHGoogle Scholar
  27. 27.
    Ren, W., E, W.: Heterogeneous multiscale method for the modeling of complex fluids and microfluidics. J. Comput. Phys. 204, 1–26 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sun, Y., Engquist, B.: Heterogeneous multiscale methods for interface tracking of combustion fronts. SIAM Multiscale Model. Simul. 5, 532–563 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tornberg, A.-K., Engquist, B.: The segment projection method for interface tracking. Comm. Pure Appl. Math. 56, 47–79 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Comm. Math. Sci. 1, 385–391 (2003) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Vanden-Eijnden, E.: On HMM-like integrators and projective integration methods for systems with multiple time scales. Comm. Math. Sci. 5, 495–505 (2007) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations