The Heterogeneous Multiscale Methods with Application to Combustion

Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 95)

Abstract

The framework of the heterogeneous multiscale methods (HMM) is briefly reviewed. Both the original HMM and the seamless HMM are discussed. Applications to interface capturing and flame front tracking are presented.

Keywords

Fractional Step Method Microscale Model Front Tracking Method Macroscale Model Heterogeneous Multiscale Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T.J., et al. (eds.) Multiscale and Multiresolution Methods: Theory and Applications, Yosemite Educational Symposium Conf. Proc., 2000, Lecture Notes in Comp. Sci. and Engrg. 20, pp. 3–96. Springer-Verlag, New York (2002) Google Scholar
  3. 3.
    Cheng, L.-T., E, W.: The heterogeneous multiscale method for interface dynamics. In Cheng, S.Y., et al. (eds.) Recent Advances in Scientific Computing and Partial Differential Equations. Contemp. Math. 330, pp. 43–53. Amer. Math. Soc., Providence (2003) Google Scholar
  4. 4.
    Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967) MATHCrossRefGoogle Scholar
  5. 5.
    Colella, P., Majda, A., Roytburd, V.: Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Statist. Comput. 7, 1059–1080 (1986) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Colella, P., Woodward, P.: The piecewise-parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm. Math. Sci. 1, 423–436 (2003) MATHMathSciNetGoogle Scholar
  8. 8.
    E, W., Engquist, B.: The heterogeneous multi-scale methods. Comm. Math. Sci. 1, 87–133 (2003) MATHMathSciNetGoogle Scholar
  9. 9.
    E, W., Engquist, B.: Multiscale modeling and computation. Notices of the AMS, 50, 1062–1070 (2003) MATHMathSciNetGoogle Scholar
  10. 10.
    E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Comm. Comput. Phys. 3, 367–450 (2007) MathSciNetGoogle Scholar
  11. 11.
    E, W., Lu, J.: Seamless multiscale modeling via dynamics on fiber bundles. Comm. Math. Sci. 5, 649–663 (2007) MATHMathSciNetGoogle Scholar
  12. 12.
    E, W., Ren, W., Vanden-Eijnden, E.: A general strategy for designing seamless multiscale methods. J. Comput. Phys. 228, 5437–5453 (2009) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp. 34, 45–75 (1980) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Engquist, B., Tsai, R.: Heterogeneous multiscale method for a class of stiff ODEs. Math. Comp. 74, 1707–1742 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fan, H., Jin, S.: Front motion in muti-dimensional viscous conservation laws with stiff source terms driven by mean curvature and front thickness. Quart. Appl. Math. 61, 701–721 (2003) MATHMathSciNetGoogle Scholar
  16. 16.
    Fatkullin, I., Vanden-Eijnden, E.: A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200, 605–638 (2004) MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Glimm, J., McBryan, O., Menikoff, R., Sharp, D.H.: Front tracking applied to Rayleigh-Taylor instability. SIAM J. Sci. Statist. Comput. 7, 230–251 (1986) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Helzel, C., LeVeque, R.J., Warnecke, G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Comm. Math. Sci. 1, 715–762 (2003) MATHMathSciNetGoogle Scholar
  20. 20.
    LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser-Verlag, Boston (1990) MATHGoogle Scholar
  21. 21.
    LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187–210 (1990) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equations. unpublished. Google Scholar
  23. 23.
    Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987) MATHGoogle Scholar
  25. 25.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ren, W.: Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Comm. Math. Sci. 5, 1027–1037 (2007) MATHGoogle Scholar
  27. 27.
    Ren, W., E, W.: Heterogeneous multiscale method for the modeling of complex fluids and microfluidics. J. Comput. Phys. 204, 1–26 (2005) MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sun, Y., Engquist, B.: Heterogeneous multiscale methods for interface tracking of combustion fronts. SIAM Multiscale Model. Simul. 5, 532–563 (2006) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tornberg, A.-K., Engquist, B.: The segment projection method for interface tracking. Comm. Pure Appl. Math. 56, 47–79 (2003) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Comm. Math. Sci. 1, 385–391 (2003) MATHMathSciNetGoogle Scholar
  32. 32.
    Vanden-Eijnden, E.: On HMM-like integrators and projective integration methods for systems with multiple time scales. Comm. Math. Sci. 5, 495–505 (2007) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Program in Applied and Computational MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations