Climate Change Impacts on Coastal Waters of the Baltic Sea

  • Oda Störmer
Part of the Coastal Research Library book series (COASTALRL, volume 1)


Coastal regions are particular sensitive towards environmental changes. Climate Change is likely to cause changes in main determining environmental factors in coastal waters of the Baltic Sea. Several model studies indicate an increasing water temperature (in average about 3.0°C in sea surface temperature), a decrease in salinity (in the range of 2–3 g kg–1 in sea surface salinity) as well as changes in source and distribution of nutrient discharge via river runoff. Changes in the ecosystem of coastal waters in the southern Baltic Sea area occur mainly during the summer season due to decreased river runoff and hence, decreased nutrient input. This may result in reduced algae growth in coastal waters but also carries the risk of potentially toxic cyanobacteria blooms caused by N-Limitation. Cyanobacteria growth is also supported by higher water temperatures. Additionally, changes in species composition and distribution, the occurrence of pathogens as well as the introduction of non-indigenous species could be expected due to warmer water temperatures and/or a decrease in salinity. Those changes in the ecosystem are likely to have an effect on anthropogenic uses in coastal waters like bathing tourism (health problems) and fisheries (changes in coastal fish communities). On the other hand, the anthropogenic uses themselves affect the ecosystem considerably (e.g. pollution, overfishing, noise). The impact of Climate Change has to be seen as one of many interacting factors. Also changes in land use patterns and agricultural management will have a main influence on nutrient loads from the catchment area. Further, social developments like the increasing attractiveness of coastal regions in the southern Baltic Sea area for tourists and migrants will influence the impact on the local ecosystem of coastal waters. For coastal adaptation strategies knowledge about the regional vulnerability towards Climate Change is essential but lacking for Baltic coastal waters recently.


Coastal Water River Runoff Vistula Lagoon Warm Water Temperature Coastal Fish Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author likes to thank H. Janßen and I. Krämer (Leibniz-Institute for Baltic Research Warnemünde) for many supportive comments on the article. The work was supported by the projects BaltCICA and BALTADAPT (Part-financed by Baltic Sea Region Programme of the European Union) as well as RADOST (BMBF 01LR0807).


  1. Alheit J, Bakun A (2010) Population synchronies within and between ocean basins: apparent teleconnections and implications as to physical-biological linkage mechanisms. J Marine Syst 79:267–285CrossRefGoogle Scholar
  2. Attril MJ, Power M (2002) Climatic influence on a marine fish assemblage. Lett Nat 417:275–278CrossRefGoogle Scholar
  3. BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin. Springer, Berlin and HeidelbergGoogle Scholar
  4. Baumann S (2010) Quallen an der deutschen Ostseeküste – Auftreten, Wahrnehmung, Konsequenzen. IKZM-Oder Berichte Vol 59Google Scholar
  5. BBR Bundesamt für Bauwesen und Raumordnung (2008) Raumentwicklungsstrategien zum Klimawandel – Vorstudie für Modellvorhaben. Zusammenfassung des Zwischenberichts zu den räumlichen Wirkfolgen von Klimaänderungen und ihrer raumordnerischen Relevanz. BBR-Online-Publikation 19Google Scholar
  6. Behrendt H, Opitz D (2000) Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122CrossRefGoogle Scholar
  7. Bijlsma L, Ehler CN, Klein RJT, Kulshrestha SM, McLean RF, Mimura N, Nicholls RJ, Nurse LA, Perez Nieto H, Stakhiv EZ, Turner RK and Warrick RA (1996) Coastal zones and small islands. In: Watson RT, Zinyowera MC and Moss RH (eds) Climate change 1995 – impacts, adaptation and mitigation of climate change. Scientific-technical analyses. Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp. 289–324Google Scholar
  8. Bonsdorff E, Blomqvista EM, Mattilab J, Norkko A (1997) Coastal eutrophication: causes, consequences and perspectives in the Archipelago areas of the northern Baltic Sea. Estuar Coast Shelf Sci 44:63–72CrossRefGoogle Scholar
  9. Constanza R, d‘Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  10. Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. In: Blaxter JHS and Southward AJ (eds) Advances in marine biology. Academic Press Limited, San Diego, CAGoogle Scholar
  11. Dippner JW, Vourinen I, Daunys D, Flinkman J, Halkka A, Köster FW, Lehikoinen E, MacKenzie BR, Möllmann C, Møhlenberg F, Olenin S, Schiedek D, Skov H, Wasmund N (2008) Climate-related marine ecosystem change. In: BACC Author Team (eds) Assessment of climate change for the Baltic Sea basin. Springer, Berlin and HeidelbergGoogle Scholar
  12. Dolch T (2004) The impact of water quality on tourism – a case study at the Oder Estuary. In: Schernewski G and Dolch T (eds) The Oder Estuary – against the background of the European water framework directive. Mar Sci Rep 57Google Scholar
  13. Döscher R, Meier HEM (2004) Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea. Royal swedish academy of sciences. Ambio 33(4–5):242–248Google Scholar
  14. Furmanczyk K, Musielak S (2002) Important features of coastline dynamics in Poland: ‘Nadal Points’ and ‘Gates’. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems. Springer, Berlin and HeidelbergGoogle Scholar
  15. Graham LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33:235–241Google Scholar
  16. Graham LP, Deliang C, Christensen OB, Kjellström E, Krysanova V, Meier HEM, Radziejewski M, Räisänen J, Rockel B, Ruosteenoja K (2008) Projections of future anthropogenic climate change. In: BACC Author Team (eds) Assessment of climate change for the Baltic Sea basin. Springer, Berlin and HeidelbergGoogle Scholar
  17. Gunnars A, Blomquist S (1997) Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions – an experimental comparison of freshwater and brackish marine systems. Biogeochemistry 37:203–206CrossRefGoogle Scholar
  18. Hänninen J, Vourinen I, Hjelt P (2000) Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. American Society of Limnology and Oceanography, Inc. Limnol Oceanogr 45(3):703–710Google Scholar
  19. HELCOM (2005) Nutrient Pollution to the Baltic Sea in 2000. Baltic Sea Environment Proceedings No 100Google Scholar
  20. HELCOM (2006) Changing communities of Baltic Coastal Fish: executive summary. Assessment of coastal fish in the Baltic Sea. 103BGoogle Scholar
  21. HELCOM (2007) Climate Change in the Baltic Sea Area. HELCOM Thematic Assessment in 2007. Baltic Sea Environment Proceedings No. 111Google Scholar
  22. HELCOM (2010) Atlas of the Baltic SeaGoogle Scholar
  23. Intergovernmental Panel on Climate Change (2007) Climate Change 2007: Synthesis Report. Fourth Assessment ReportGoogle Scholar
  24. Jung (2000) The North Atlantic Oscillation: variability and interactions with the North Atlantic Ocean and Artic Sea Ice. Berichte aus dem Institut für Meereskunde an der Christian-Albrechts-Universität Kiel, DissertationGoogle Scholar
  25. Kahru M, Leppänen JM, Rud O, Savchuk OP (2000) Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar Ecol Prog Ser 207:13–18CrossRefGoogle Scholar
  26. Lampe R (1996) Die Küsten der Ostsee und ihre Dynamik. In: Lozán JL, Lampe R, Matthäus W, Rachor E, Rumohr H, Westernhagen H von (eds) Warnsignale aus der Ostsee. Parey, Berlin, pp. 41–47Google Scholar
  27. Lappalainen A (2002) The Effects of Recent Eutrophication on Freshwater Fish Communities and Fishery on the Northern Coast of the Gulf of Finland, Baltic Sea. PhD Thesis, University of Helsinki, FinlandGoogle Scholar
  28. Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the Brackish Baltic Sea. Biol Inv 2(2):151–163CrossRefGoogle Scholar
  29. Matthäus W, Nehring D, Feistel R, Nausch G, Mohrholz V, Lass HU (2008) The inflow of highly saline water into the Baltic Sea. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, NJGoogle Scholar
  30. Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68CrossRefGoogle Scholar
  31. Meier HEM, Broman B, Kjellström E (2004b) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27:59–75CrossRefGoogle Scholar
  32. Meier HEM, Döscher R, Hallka A (2004a) Simulated distributions of Baltic sea-ice in warming climate and consequences for the winter habitat of the Baltic ringed seal. Ambio 33:249–256Google Scholar
  33. Meier HEM, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33:L15705CrossRefGoogle Scholar
  34. MLUV Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz (2010): Kutter- und Küstenfischerei. Accessed 7 July 2010
  35. Mortimer CH (1971) Chemical exchanges between sediments and water in the Great Lakes – speculations on probable regulatory mechanisms. Limnol Oceanogr 16:387–404CrossRefGoogle Scholar
  36. Muijsken MA, Menger HJ (2007) Vibrio chloerae: ook in Nederland zjin infecties mogelijk. Infectieziekten Bulletin 18(4):120–121Google Scholar
  37. Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Marine Syst 81(3):213–224CrossRefGoogle Scholar
  38. Neumann T, Fennel W, Kremp C (2002) Experimental simulations with an ecosystem model of the Baltic Sea: a nutrient load reduction experiment. Global Biochem Cy 16(3):7(1)–7(12)Google Scholar
  39. Nixon (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219Google Scholar
  40. Obenaus H, Köhn J (2002) Important user needs in the coastal zone of Mecklenburg-Vorpommern and legal obligations in the German Baltic territorial sea. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems. Springer, BerlinGoogle Scholar
  41. Olesen JE, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262CrossRefGoogle Scholar
  42. Ottersen G, Stenseth NC, Hurrell JW (2004) Climatic fluctuations and marine systems: a general introduction to the ecological effects. In: Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (eds) Marine ecosystems and climate variation. Oxford University Press, Oxford, pp 3–15Google Scholar
  43. Petersen JK, Würgler Hansen J, Brogaard Laursen M, Clausen P, Carstensen J, Conley DJ (2008) Regime Shift in a coastal marine ecosystem. Ecol Appl 18(2):497–510CrossRefGoogle Scholar
  44. Pihl L, Modin J, Wennhage H (2005) Relating plaice (Pleuronectes platessa) recruitment to deteriorating habitat quality: effects of macroalgal blooms in coastal nursery grounds. Can J Fish Aquat Sci 62(5):1184–1193CrossRefGoogle Scholar
  45. Rahmsdorf S (2007) A semi-empirical approach to projecting future sea-level rise. Science 315(5810):368–370CrossRefGoogle Scholar
  46. Richardson K, Jørgensen BB (1996) Eutrophication: definition, history and effects. In: Jørgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems. American geophysical union, Washington, pp 1–20Google Scholar
  47. Roijeckers RMM, Lürling FLLW (2007) Climate change and bathing water quality. Environmental science group aquatic ecology and water quality chair. Wageningen UR, Netherlands.
  48. Russak V (1994) Is the radiation climate in the Baltic Sea region changing? Ambio 23(2): 160–163Google Scholar
  49. Schernewski G, Behrendt H, Neumann T (2008) An integrated river basin-coast-sea modeling scenario for nitrogen management in coastal waters. J Coast Conserv 12:53–66CrossRefGoogle Scholar
  50. Schernewski G, Neumann T, Wielgat M (2006) Referenzwerte für Hydrochemie und Chlorophyll-a in deutschen Küstengewässern der Ostsee. Rostock Meeresbiology Beitrag 15:7–23Google Scholar
  51. Schiewer U (ed) (2008) Ecology of baltic coastal waters. Ecological studies 197. Springer, Berlin and HeidelbergGoogle Scholar
  52. Schinke H, Matthäus W (2003) Beeinflussen Ferneinwirkungen das Auftreten von Salzwassereinbrüchen in die Ostsee? In: Chmielewski FM, Foken T (eds) Beitr Klim Meeresforsch Berlin und Bayreuth. Eigenverl, Chmielewski & Foken, pp 189–198Google Scholar
  53. Siegel H, Gerth M, Tschersich G (2008): Satellite-derived sea surface temperature for the period 1990–2005. In: Feistel R, Nausch G, Wasmund N (eds) State and evolution of the Baltic Sea, 1952–2005. Wiley, Hoboken, NJ, pp. 241–262CrossRefGoogle Scholar
  54. Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. PNAS 99(24):15497–15500CrossRefGoogle Scholar
  55. Stigebrandt A, Gustafsson BG (2003) Response of the Baltic Sea to climate change – theory and observations. J Sea Res 49:243–256Google Scholar
  56. UBA (2009) Klimawandel und marine Ökosysteme (Climate Change and marine ecosystems). Meeresschutz ist Klimaschutz. Dessau-RoßlauGoogle Scholar
  57. Wasmund N (1997) Occurrence of cyanobacteria blooms in the Baltic Sea in relation to environmental conditions. Int Rev Ges Hydrobiol 82:169–184CrossRefGoogle Scholar
  58. Wasmund N (2001) Harmful Algae Blooms in coastal waters of the southeastern Baltic Sea. In: Schernewski G, Schiewer U (eds) Baltic coastal ecosystems: structure, function and management, Ceedes Series. Springer, Berlin, pp 65–74Google Scholar
  59. Wasmund N, Nasuch G, Matthäus W (1998) Phytoplankton spring blooms in the southern Baltic Sea-spatio-temporal development and long-term trends. J Plank Res 20(6):1099–1117CrossRefGoogle Scholar
  60. Westernhagen H von (1970) Erbrütung der Eier von Dorsch (Gadus morhua), Flunder (Pleuronectes flesus) und Scholle (Pleuronectes platessa) unter kombinierten Temperatur- und Salzgehaltsbedingungen (Rearing the eggs of cod (Gadus morbua), flounder (Pleuronectesflesus) and plaice (Pleuroneetes platessa) under combined temperature and salinity conditions). Springer Berlin/Heidelberg, Germany. Helgoland Mar Res 21(1–2):21–102Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Leibniz Institute for Baltic Sea Research WarnemündeRostockGermany

Personalised recommendations