Regionalisation of Climate Scenarios for the Western Baltic Sea

Chapter
Part of the Coastal Research Library book series (COASTALRL, volume 1)

Abstract

Global coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from two 140-year, high-resolution regional ocean model experiments for the Western Baltic Sea. The forcing is taken from a regional atmospheric model and a medium scale ocean model. The model runs with two greenhouse gas emission scenarios (each for 100 years), A1B and B1, for the period 2000–2100. A control run (C20) from 1960 to 2000 is used for validation. For both scenarios, the results show the expected warming, with an increase of 0.5–2.5 K at the sea surface and 0.7–2.8 K below 40 m. The simulations further indicate a decrease in salinity, a change in stratification, and an increase of the return period of storm surges.

Keywords

Return Period Cold Bias Salt Flux Bottom Salinity Strong Wind Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supercomputing power was provided by HLRN (Norddeutscher Verbund für Hoch-und Höchstleistungsrechnen).

References

  1. Adaptation strategies for the Baltic Coastline – RAdOst. http://klimzug-radost.de/en
  2. Ådlandsvik B, Bentsen M (2007) Downscaling a twentieth century global climate simulation to the North Sea. Ocean Dyn 57(4):453–466CrossRefGoogle Scholar
  3. BACC Team TBA (2008) Assessment of climate change for the Baltic Sea Basin, Regional Climate Studies, 1st edn. Springer, Berlin and HeidelbergGoogle Scholar
  4. Banas NS, Hickey BM (2005) Mapping exchange and residence time in a model of Willapa Bay, Washington, a branching, macrotidal estuary. J Geophys Res 110(C11)Google Scholar
  5. Brown JM, Souza A, Wolf J (2010) Surge modelling in the eastern Irish Sea: present and future storm impact. Ocean Dyn 60(2):227–236CrossRefGoogle Scholar
  6. Burchard H, Bolding K (2001) Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer. J Phys Oceanogr 31(8):1943–1968CrossRefGoogle Scholar
  7. Burchard H, Bolding K (2002) GETM – a general estuarine transport model. Scientific documentation. Technical report EUR 20253 EN. Tech. Rep., European CommissionGoogle Scholar
  8. Burchard H, Bolding K, Villarreal MR (2004) Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn 54(2):250–265CrossRefGoogle Scholar
  9. Burchard H, Janssen F, Bolding K, Umlauf L, Rennau H (2009) Model simulations of dense bottom currents in the Western Baltic Sea. Cont Shelf Res 29(1):205–220CrossRefGoogle Scholar
  10. Burchard H, Lass HU, Mohrholz V, Umlauf L, Sellschopp J, Fiekas V, Bolding K, Arneborg L (2005) Dynamics of medium-intensity dense water plumes in the Arkona Basin, Western Baltic Sea. Ocean Dyn 55(5):391–402CrossRefGoogle Scholar
  11. Canuto VM, Howard A, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: One-point closure model. Momentum and heat vertical diffusivities. J Phys Oceanogr 31:1413–1426CrossRefGoogle Scholar
  12. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30CrossRefGoogle Scholar
  13. Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13:489–506CrossRefGoogle Scholar
  14. Clark RA, Fox CJ, Viner D, Livermore M (2003) North Sea cod and climate change – modelling the effects of temperature on population dynamics. Glob Change Biol 9(11):1669–1680CrossRefGoogle Scholar
  15. Climate limited-area modelling community (2008). http://www.clm-community.eu.
  16. Feistel R, Nausch GNW (2008) State and evolution of the Baltic Sea, chemistry 1952–2005: a detailed 50-year survey of meteorology and climate, physics, biology and marine environment. Wiley, Hoboken, NJGoogle Scholar
  17. Gibbons JD (1985) Nonparametric statistical inference, 2nd edn. New York, NY, Marcel DekkerGoogle Scholar
  18. Griffies SM, Pacanowski RC, Schmidt M, Balaji V (2001) Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon Weather Rev 129(5):1081–1098CrossRefGoogle Scholar
  19. Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86(3–4):361–379Google Scholar
  20. Intergovernmental panel on climate change IP (2007) Climate change 2007 – the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  21. Isla JA, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14(4):895–906CrossRefGoogle Scholar
  22. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  23. Janssen F, Neumann T, Schmidt M (2004) Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions. Mar Ecol-Prog Ser 275:59–68CrossRefGoogle Scholar
  24. Jobling M (1996) Temperature and growth: modulation of growth rate via temperature change. Cambridge University Press, CambridgeGoogle Scholar
  25. Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496CrossRefGoogle Scholar
  26. Lettmann K, Wolff JO, Badewien TH (2009) Modeling the impact of wind and waves on suspended particulate matter fluxes in the East Frisian Wadden Sea (southern North Sea). Ocean Dyn 59(2):239–262CrossRefGoogle Scholar
  27. Matthäus W, Franck H (1992) Characteristics of major Baltic inflows – a statistical analysis. Cont Shelf Res 12(12):1375–1400CrossRefGoogle Scholar
  28. Max Planck Institute for meteorology MPI (2008) ECHAM5. http://www.mpimet.mpg.de/en/wissenschaft/modelle/echam.html.
  29. Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68CrossRefGoogle Scholar
  30. Meier HEM, Broman B, Kjellström E (2004) Simulated sea level in past and future climates of the Baltic Sea. Clim Res 27(1):59–75CrossRefGoogle Scholar
  31. Meier HEM, Kauker F (2003) Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J Geophys Res 108:3368. doi:10.1029/2003JC001,799CrossRefGoogle Scholar
  32. Meier HEM, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Let 33:L15,705. doi:10.1029/2006GL026,488CrossRefGoogle Scholar
  33. Meier HM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74(4):610–627, timescale- and tracer-based methods for understanding the results of complex marine modelsGoogle Scholar
  34. Melsom A, Lien VS, Budgell WP (2009) Using the regional ocean modeling system (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn 59(6):969–981CrossRefGoogle Scholar
  35. Meyer M, Harff J, Gogina M, Barthel A (2008) Coastline changes of the darss-zingst peninsula – a modelling approach. J Marine Syst 74:147–154CrossRefGoogle Scholar
  36. Neumann T (2000) Towards a 3D-ecosystem model of the Baltic Sea. J Marine Syst 25(3–4):405–419CrossRefGoogle Scholar
  37. Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Marine Syst 81(3):213–224CrossRefGoogle Scholar
  38. North-German Supercomputing Alliance (HLRN) (2007). http://www.hlrn.de.
  39. Omstedt A, Pettersen C, Rodhe J, Winsor P (2004) Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim Res 25(3):205–216CrossRefGoogle Scholar
  40. Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1):187–192CrossRefGoogle Scholar
  41. Sánchez E, Gallardo C, Gaertner M, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44(1–4):163–180CrossRefGoogle Scholar
  42. Seguí PQ, Ribes A, Martin E, Habets F, Boé J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383(1–2):111–124CrossRefGoogle Scholar
  43. Simpson JH, Hughes DG, Morris NCG (1977) The relation of seasonal stratification to tidal mixing on the continental shelf. A voyage of discovery, Deep-Sea Research, pp. 327–340Google Scholar
  44. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Global Planet Change 63(2–3):112–126CrossRefGoogle Scholar
  45. Stanev EV, Flemming BW, Bartholomä A, Staneva JV, Wolff JO (2007) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27(6):798–831CrossRefGoogle Scholar
  46. Staneva JV, Stanev EV, Wolff JO, Badewien TH, Reuter R, Flemming BW, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319CrossRefGoogle Scholar
  47. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. B Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  48. Umlauf L, Burchard H, Bolding K (2006) General ocean turbulence model. Source code documentation. Technical Report 63. Tech. rep., Baltic Sea Research Institute Warnemünde, Warnemünde, GermanyGoogle Scholar
  49. Umlauf L, Lemmin U (2005) Inter-basin exchange and mixing in hypolimnion of a large lake: the role of long internal waves. Limnol Oceanogr 50(5):1601–1611CrossRefGoogle Scholar
  50. van Roosmalen L, Christensen JH, Butts MB, Jensen KH, Refsgaard JC (2010) An intercomparison of regional climate model data for hydrological impact studies in Denmark. J Hydrol 380(3–4):406–419CrossRefGoogle Scholar
  51. Wang S, McGrath R, Hanafin J, Lynch P, Semmler T, Nolan P (2008) The impact of climate change on storm surges over Irish waters. Ocean Modelling 25(1–2):83–94CrossRefGoogle Scholar
  52. Zhang W, Harff J, Schneider R, Wu C (2010) Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60(5):1085–1114CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Leibniz Institute for Baltic Sea ResearchRostockGermany

Personalised recommendations