Skip to main content

Stromatolites and Cyanobacterial Mats in Peritidal Evaporative Environments in the Neoproterozoic of Bas-Congo (Democratic Republic of Congo) and South Gabon

  • Chapter
  • First Online:
STROMATOLITES: Interaction of Microbes with Sediments

Abstract

The “Schisto-Calcaire Subgroup” is a muddy predominantly subtidal shelf succession that crops in the West Congolian Belt. The approximately 300-m-thick CI (Bas-Congo) and approximately 20-m-thick SCIII (Gabon) series were deposited in a very shallow marine evaporitic environment. The evidence for this interpretation includes sedimentology of dolomite and sulfate minerals and oxygen isotopes. Cyanobacteria (probable Oscillatorians) formed mats on the inland marshes fringing ponds of channeled belts. In Gabon, they are associated with abundant domal stromatolites deposited in shallow to lower intertidal settings. While diagenetic overprints (dolomicrosparitization, sulfate growth, silica replacement) may be significant, several microbial laminar mudstones retained their original fabric. SEM analysis revealed well-preserved three-dimensional (3D) cyanobacterial communities associated with the stromatolites. During progressive lithification in the upper part of shallowing-upward evaporitic sequences, the stromatolites constituted a favorable substrate which has been invaded and colonized by probable fungal hyphae. These produced characteristic features that have been reproduced in vitro in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez, Ph. (1995) Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African craton: relations with Late Proterozoic intracratonic troughs. Geol. Rundschau 84: 636–648.

    Article  Google Scholar 

  • Alvarez, Ph. and Maurin, J.C. (1991) Evolution sédimentaire et tectonique du bassin protérozoïque supérieur de Comba (Congo): stratigraphie séquentielle du Supergroupe Ouest-Congolien et modèle d’amortissement sur décrochement dans le contexte de la tectogenèse panafricaine. Precambrian Res. 50: 137–171.

    Article  Google Scholar 

  • Amieux, P. (1980) Exemple d’un passage des ‘black shales’ aux évaporites dans le Ludien (Oligocène inférieur) du bassin de Mormoiron (Vaucluse, Sud-Est de la France). Bull. Centres Rech. Explor.-Prod. Elf-Aquitaine 4/1: 281–307.

    Google Scholar 

  • Cahen, L. (1978) La stratigraphie et la tectonique du Supergroupe Ouest-Congolien dans les zones médiane et externe de l’orogénèse Ouest-Congolien (pan-african) au Bas-Zaïre et dans les regions voisines. Annals of Royal Museum of the Central Africa, in 8, Sci. Geol. 83: 150.

    Google Scholar 

  • Cahen, L. and Lepersonne, J. (1967) The precambrian of the Congo, Rwanda and Burundi, In: K. Rankama (ed.) The Precambrian, Vol. 3. Interscience Publishers, New York, pp. 143–290.

    Google Scholar 

  • Chacon, E., Berrendero, E. and Pichel, F.G. (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sed. Geol. 185: 215–228.

    Article  Google Scholar 

  • Chevallier, L., Makanga, J.F. and Thomas, R.J. (2002) Carte géologique de la république gabonaise, 1: 1 000 000. Notice explicative. Council for Geoscience, South Africa, pp. 195.

    Google Scholar 

  • Clark, D.N. (1980) The diagenesis of Zechstein carbonate sediments, In: H. Füchtbauer and T. Peryt (eds.) The Zechstein Basin with Emphasis on Carbonate Sequences. Contribution to Sedimentology, Vol. 9. E. Schweizerbart’sche Verlagsbuchandlung, Stuttgart, pp. 167–203.

    Google Scholar 

  • Clough, J.G. and Goldhammer, R.K. (2000) Evolution of the Neoproterozoic Katakturuk Dolomite Ramp Complex, Northeastern Brooks Range, Alaska, In: J.P. Grotzinger and N.P. James (eds.) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, Vol. 67. SEPM Special Publication, Tulsa, OK, pp. 209–241.

    Chapter  Google Scholar 

  • Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. and Jin, Y. (2005) U-Pb ages from the Neoproterozoic Doushanto Formation, China. Science 308: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Delhaye, F. and Sluys, M. (1923) Esquisse géologique du Congo Occidental. Etude du Système du Schisto-Calcaire: missions géologiques de 1914 et 1918-19. Etablissement Cartographique E. Patesson, Bruxelles-Uccle, pp. 1923–1924.

    Google Scholar 

  • Delpomdor, F. (2007) Lithostratigraphie et sédimentologie de la chaîne Ouest Congolienne du Néoprotérozoïque supérieur (Formation de la Diamictite supérieure et Sous-groupe du Schisto-Calcaire) Bas-Congo, République Démocratique du Congo. Unpubl. M.Sc. thesis, Free University of Brussels, Brussels, Belgium, 138 pp.

    Google Scholar 

  • Freytet, P. and Verrecchia, E.P. (1999) Calcitic radial palisadic fabric in freshwater stromatolites: diagenetic and recrystallized feature or physicochemical sinter crust? Sediment. Geol. 126/1-4: 97–102.

    Article  CAS  Google Scholar 

  • Frimmel, H.E., Tack, L., Basei, M.S., Nutman, A.P. and Boven, A. (2006) Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J. Afr. Earth Sc. 46: 221–239.

    Article  Google Scholar 

  • Gérard, G. (1958) Carte géologique de l’Afrique Equatoriale Française au 2 000 000 avec notice explicative. Brazza. Dir. Mines et Géol, Afrique Equatoriale Française, 198 pp., 4 feuilles.

    Google Scholar 

  • Gerdes, G., Krumbein, W. and Noffke, N. (2000) Evaporite microbial sediments, In: R. Riding and S. Awramik (eds.) Microbial Sediments. Springer, Berlin, pp. 196–208.

    Google Scholar 

  • Grotzinger, J.P. (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, In: P.D. Crevello, J.L. Wilson, J.F. Sarg and J.F. Read (eds.) Controls on Carbonate Platform and Basin Development, Vol. 44. Special Publication. Society of Economic Paleontologists and Mineralogists, Tulsa, OK, pp. 79–106.

    Chapter  Google Scholar 

  • Hardie, L.A. (ed.) (1977) Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas. John Hopkins Univ. Stud. Geol. 22: 202.

    Google Scholar 

  • Hardie, L.A. (1987) Dolomitization, a critical view of some current views. J. Sed. Res. 57: 166–183.

    CAS  Google Scholar 

  • Hardie, L.A. and Ginsburg, R.N. (1977) Layering: the origin and environmental significance of lamination and thin bedding, In: Hardie, L.A. (ed.) Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas, Vol. 22. John Hopkins University Studies in Geology, Baltimore, pp. 50–123.

    Google Scholar 

  • Hoffman, P.F. (1974) Shallow and deepwater stromatolites in Lower Proterozoic facies change, Great Slave Lake, Canada. Am. Assoc. Petrol. Geol. 58: 856–867.

    Google Scholar 

  • Hoffmann, P.F., Condon, D.J., Bowring, S.A. and Crowley, J.L. (2004) U-Pb zircon date from the Neoproterozoic Ghaub Fomration, Namibia: constraints on Marinoan glaciation. Geology 32: 817–820.

    Article  CAS  Google Scholar 

  • Hoiczyk, E. (1998) Structural and biochemical analysis of the sheath of Phormidium uncinatum. J. Bacteriol. 180: 3923–03932.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S.B. and Kaufman, A.J. (1999) The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chem. Geol. 161: 37–57.

    Article  CAS  Google Scholar 

  • Kolo, K. (2009) Microbial alteration of mineral substrates. Experimental and fossil microbe-mineral interactions. Department of Geology, Vrije Universiteit Brussels, Unpublished Ph.D. thesis, 221p.

    Google Scholar 

  • Kolo, K., Keppens, E., Préat, A. and Claeys, P. (2007) Experimental observations on fungal diagenesis of carbonate substrates. J. Geophys. Res 112: G01007, doi: 10.1029/2006JG000203.

    Article  Google Scholar 

  • Land, L.S. (1980) The isotopic and trace element geochemistry of dolomite: the state of the art, In: D.H. Zenger, J.B. Dunham and R.L. Ethington (eds.) Concepts and Models of Dolomitization, Vol. 28. Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, OK, pp. 87–110.

    Google Scholar 

  • Lepersonne, J. (1951) Données Nouvelles sur la stratigraphie des terrains anciens du Bas-Congo. Bull. Soc. Belg. Paléont. Hydr. LX(2): 169–189.

    Google Scholar 

  • Logan, B.W., Rezak, R. and Ginsburg, R.N. (1964) Classification and environmental significance of algal stromatolites. J. Geol. 72: 68–83.

    Article  Google Scholar 

  • Narbonne, G.M., James, N.P., Rainbird, R.H. and Morin, J. (2000) Early neoproterozoic (Tonian) patch reef complexes, Victoria Island, Arctic, Canada, In: J.P. Grotzinger and N.P. James (eds.) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, Vol. 67. SEPM Special Publication, Tulsa, OK, pp 163–177.

    Chapter  Google Scholar 

  • Nédélec, A., Affaton, P., France-Lanord, C., Charriere, A. and Alavaro, J. (2007) Sedimentology and chemostratigraphy of the Bwipe Neoproterozoic cap dolostones (Ghana, Volta Basin): a record of microbial activity in a peritidal environment. C. R. Geosci. 339: 223–239.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G. and Klenke, T. (2003) Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic). Earth-Sci. Rev. 62: 163–176.

    Article  CAS  Google Scholar 

  • Pentecost, A. and Riding, R. (1986) Calcification in cyanobacteria, In: B. Leadbeater and R. Riding (eds.) Biomineralization in Lower Plants and Animals, Clarendon Press, Amsterdam, pp. 73–90.

    Google Scholar 

  • Préat, A., Kolo, K., Prian, J.P. and Delpomdor, F. (2010) A peritidal evaporite environment in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga basin). Precambrian Res. 177: 253–265, doi: 10.1016/j.precamres.2009.12.003.

    Article  Google Scholar 

  • Prian, J.P. (2008) Notice géologique et ressources minerales de la carte de N’Dendé à 1:200000. ­Document provisoire, BRGM, 79p.

    Google Scholar 

  • Purser, B.H. (ed.) (1973) The Persian Gulf. Holocene Carbonate Sedimentation and Diagenesis in a Shallow Epicontinental Sea. Springer, Berlin, pp. 471

    Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A., Stolz, J.K., Bebout, B.M., Dupraz, C., MacIntyre, I.G., Paerl, H.W., Pinchney, J.L., Prufert-Bebout, L., Steppe, T.F. and DesMarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47: 179–214.

    Article  CAS  Google Scholar 

  • Sanz-Montero, M.E., Rodriguez-Aranda, J.P. and Calvo, J.P. (2006) Mediation of endoevaporitic microbial communities in early replacement of gypsum by dolomite: a case study from Miocene lake deposits of the Madrid Basin, Spain. J. Sed. Res. 76: 1257–1266.

    Article  CAS  Google Scholar 

  • Saylor, B.Z., Kaufman, A.J., Grotzinger, J.P. and Urban, F. (1998) A composite reference section for terminal Proterozoic strata of Southern Namibia. J. Sed. Res. 68: 1223–1235.

    Article  CAS  Google Scholar 

  • Schopf, J.W. (1968) Microflora of the bitter springs formation, Late Precambrian, Central Australia. J. Paleontol. 42: 651–688.

    Google Scholar 

  • Sellwood, B.W. (1986) Shallow-marine carbonate environments, In: H.G. Reading (ed.) Sedimentary Environments and Facies. Blackwell Scientific Publications, Oxford, pp. 283–342.

    Google Scholar 

  • Seong-Joo, L. and Golubic, S. (2000) Biological and mineral component of an ancient stromatolite: Gaoyuzhuang Formation, Mesoproterozoic of China, In: J.P. Grotzinger and N.P. James (eds.) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World, Vol. 67. SEPM Special Publication, Tulsa, OK, pp. 91–102.

    Chapter  Google Scholar 

  • Tack, L., Wingate, M.T.D., Liégeois, J.-P., Fernandez-Alonzo, M. and Deblond, A. (2001) Early ­Neoproterozoic magmatism (1000-910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo), onset of Rodinia rifting at the western edge of the Congo craton. Precambrian Res. 110: 277–306.

    Article  CAS  Google Scholar 

  • Teneva, I., Dzhambazov, B., Mladenov, R. and Schirmer, K. (2005) Molecular and phylogenetic characterization of Phormidium species (cyanoprokaryota) using the CPCB-IGS-CPCA locus. J. Phycol. 41: 188–194.

    Article  CAS  Google Scholar 

  • van den Hoek, C., Mann, D.G. and Jahns, H.M. (1995) Algae, An Introduction to Phycology. Cambridge University Press, Cambridge, pp. 623.

    Google Scholar 

  • Vasconcelos, C. and McKenzie, J. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sed. Res. 67: 378–390.

    CAS  Google Scholar 

  • Veizer, J. and Hoefs, J. (1976) The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta 40: 1387–1395.

    Article  CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Thompson, J.A. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83: 1482–1493.

    CAS  Google Scholar 

Download references

Acknowledgments

In Gabon, the field work was done under the terms of the “Programme Sysmin, 8ème Fonds Européen du Développement au groupement NRGM-CGS-SANDER-MRAC.” This study was partly financially supported by the Belgium Fonds National de la Recherche Scientifique (FNRS) (FRFC grant no 2.4.578.08 F). We thank Dr. Max Fernandez Alonso and Dr. Luc Tack for the access to the samples in the Royal Museum for Central Africa (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Préat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Préat, A.R., Delpomdor, F., Kolo, K., Gillan, D.C., Prian, JP. (2011). Stromatolites and Cyanobacterial Mats in Peritidal Evaporative Environments in the Neoproterozoic of Bas-Congo (Democratic Republic of Congo) and South Gabon. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_3

Download citation

Publish with us

Policies and ethics