Advertisement

A Dual Frequency Band Comprehensive RFID TAG

  • Albert Missoni
  • Günter Hofer
  • Wolfgang Pribyl
Chapter

Abstract

Passive RFID applications are in place in several ISM frequency bands. The three most important bands are: LF (100–135 kHz), HF (13.56 MHz) and UHF (860–960 MHz). Which band is selected depends on the application, on the national radio regulations, on the established RFID infrastructure in this segment or on costs. This work proposes a passive RFID analog front end which operates at two RFID frequency bands. For contactless communication the EPC Gen2 UHF and the EPC HF standard have been implemented. For this purpose a novel single port power generation unit which comprises one wideband rectifier and two low voltage DC/DC converters has been designed. A low power and low voltage local oscillator unit and a new concept for contactless communication including ultra low power circuits for modulation and demodulation are presented. The test chip has been manufactured in a low cost 120 nm Infineon process with EEPROM technology.

References

  1. 1.
    K. Finkenzeller, RFID-Handbuch, Grundlagen und praktische Anwendung induktiver Funkanlagen, Transponder und kontaktloser Chipkarten, Hanser Fachbuchverlag, 4th edn. (2006). ISBN 3-446-40398-1Google Scholar
  2. 2.
    GS1 EPCglobal, EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID, Protocoll for Communications at 860–960 MHz Version 1.2.0, edition 1.2.0. (EPCglobal Inc., 2007)Google Scholar
  3. 3.
    GS1 EPCglobal, EPC Radio-Frequency Identity Protocols HF Version 2, edition 0.3. (EPCglobal Inc., 2007)Google Scholar
  4. 4.
    D. Engels, A Comparison of the Electronic Product Code Identification Scheme and the Internet Protocol Address Identification Scheme, (Technical memo: Auto-ID Center, Cambridge, 2002)Google Scholar
  5. 5.
    R. Herschmann, M. Camp, H. Eul, Design und Analyse elektrisch kleiner Antennen für den Einsatz in UHF RFID Transpondern. Adv. Radio Sci. 4, 93–98 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Leuchtmann, Einführung in die elektromagnetische Feldtheorie, (Pearson Education, 2005), ISBN 3-8273-7144-9Google Scholar
  7. 7.
    R. Collin, S. Rothschild, Evaluation of antenna Q, IEEE Trans. Antenn. Prop. 12(1), 23–27 (1964)CrossRefGoogle Scholar
  8. 8.
    L. Mayer, A. Scholtz, A Dual-band HF/UHF Antenna for RFID Tags, Vehicular Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, 21–24 September 2008, CalgaryGoogle Scholar
  9. 9.
    J. Curty, M. Declercq, C. Dehollain, N. Joehl, Design and optimization of passive UHF RFID systems, 1st edn. (Springer, 2007), ISBN 0-387-35274-0Google Scholar
  10. 10.
    U. Karthaus, M. Fischer, Fully integrated passive UHF RFID transponder IC with 16.7 mW minimum RF input power, IEEE J. Solid-State Circuits, 38(10), 1602–1608 (2003)CrossRefGoogle Scholar
  11. 11.
    U. Friedric, U. Karthaus, S. Furic, H. Saeppa, The Palomar project, Funded by the European commission within the IST program D7, 2002Google Scholar
  12. 12.
    D.M. Dobkin, The RF in RFID—passive UHF RFID in practice, in Newnes Communication Engineering Series, 1st edn. (2007), ISBN 978-0750682091Google Scholar
  13. 13.
    E. Bergeret, J. Gaubert, P. Pannier, Standard CMOS voltage multipliers architectures for UHF RFID applications: study and implementation, in IEEE International Conference on RFID, 2007Google Scholar
  14. 14.
    A. Facen, A. Boni, A CMOS analog frontend for a passive UHF RFID tag, low power electronics and design, in ISLPED’06. Proceedings of the 2006 International Symposium on Low power electronics and design, 2006Google Scholar
  15. 15.
    A. Missoni, C. Klapf, W. Pribyl. G. Hofer G. Holweg, A triple-band passive RFID Tag, in ISSCC 2008, Session 15.2, San Francisco, USAGoogle Scholar
  16. 16.
    T. Umeda, H. Yoshida, A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE J Solid State Circuits. 41(1), 35–41 (2006)CrossRefGoogle Scholar
  17. 17.
    C. Klapf, A. Missoni, W. Pribyl, G. Hofer, G. Holweg, Analyses and design of low power clock generators for RFID TAGs, in IEEE PRIME 2008, IstanbulGoogle Scholar
  18. 18.
    S.L.J. Gierkink, Control linearity and jitter of relaxation oscillators, in Proefschrift (Dissertation), ISBN: 90-36513170Google Scholar
  19. 19.
    C. Diorio, Watching the clock—a tag’s clock frequency is critically important to tag performance. RFID J., (2006)Google Scholar
  20. 20.
    A. Missoni, Circuit arrangement for the analog-digital conversion of a voltage (ASK-) modulated by modifying the amplitude between a low level and a high level WIPO international patent, Pub.Nr.: WO/2004/036860, 2004Google Scholar
  21. 21.
    Z. Zhu, B. Jamali, P. Cole, An HF/UHF RFID analogue front-end design and analysis, Autoidlabs-WP-HARDWARE-012, Sept. 2005, white paper series/edition 1Google Scholar
  22. 22.
    Magellan, Shunt Regulator, International Patent WO89/07295, 1989Google Scholar
  23. 23.
    P. Nikitin, K. Rao, in IEEE Antennas and Propagation Society International Symposium 2006, 9–14 July 2006, pp. 1011–1014Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Albert Missoni
    • 1
    • 2
  • Günter Hofer
    • 1
  • Wolfgang Pribyl
    • 2
  1. 1.Infineon Technologies Austria AGGrazAustria
  2. 2.Institute of ElectronicsGraz University of TechnologyGrazAustria

Personalised recommendations