RF and Low Power Analog Design for RFID

  • Raymond Barnett


A passive RFID tag consists of an antenna and IC operating without a battery. The DC power required to operate the IC is generated by converting the incoming RF field to a DC supply using a rectifier. The minimum DC power available from the rectifier is on the order of a few micro-watts, and this is the power available to operate the tag, comprised of various sub-systems. Each sub-system is typically allocated only hundreds of nano-watts of DC power to operate. The basic functional analog sub-systems of the IC include rectifier, RF and DC power management, data receiver, backscatter modulator, non-volatile memory controller, and additional supporting sub-circuits. This paper addresses several aspects of the design of RF and Analog Front End circuits for RFID.


Output Voltage Diode Rectifier Diode Bridge Rectifier Diode Doubler Digital Data Stream 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Finkenzelle, RFID Handbook: Radio Frequency Identification Fundamentals and Applications. (Wiley, New York, 1999)Google Scholar
  2. 2.
    U. Kaiser, W. Steinhagen, IEEE J. Solid-State Circuits. 30(3), 306–310 (1995)CrossRefGoogle Scholar
  3. 3.
    U. Karthaus, M. Fischer, IEEE J. Solid-State Circuits. 38(10), 1602–1608 (2003)CrossRefGoogle Scholar
  4. 4.
    M. Usami, in IEEE RFIC Symposium Digest of Papers, Jun 2004, pp. 241–244Google Scholar
  5. 5.
    R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Oliver, O. Onen, A. Pesavento, K. Sundstrom and M. Thomas, IEEE Communications Magazine. 42, 140–151 (2004)Google Scholar
  6. 6.
    J-P Curty, N. Joehl, C. Dehollain, M. Declercq, IEEE J. Solid-State Circuits. 40(11), 1602–1608 (2005)CrossRefGoogle Scholar
  7. 7.
    G. De Vita, G. Iannaccone, IEEE Trans. Microw. Theory Tech. 53(9), 2978–2990 (2005)CrossRefGoogle Scholar
  8. 8.
    R. Barnett, J. Liu, S. Lazar, IEEE J. Solid-State Circuits. 4(2), 354–370 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, S. Otaka, IEEE J. Solid-State Circuits. 41(1), 35–41 (2006)CrossRefGoogle Scholar
  10. 10.
    J.F. Dickson, IEEE J. Solid-State Circuits. SC- 11(3), 374–378 (1976)CrossRefGoogle Scholar
  11. 11.
    G. Balachandran, R. Barnett, in CICC 2009 Proceedings, Sept 2009, pp. 383–386Google Scholar
  12. 12.
    R. Barnett, G. Balachandran, S. Lazar, B. Kramer, G. Konnail, S. Rajasekhar, V. Drobny, in Proceedings of ISSCC, San Francisco, Feb 2007, pp. 582–583Google Scholar
  13. 13.
    G. Balachandran, R. Barnett, IEEE J. Solid-State Circuits. 41(9), 2019–2028 (2006)CrossRefGoogle Scholar
  14. 14.
    EPC class 1 generation 2 UHF air interface protocol standard version 1.0.9. (2005),
  15. 15.
    R. Barnett, J. Liu, in CICC 2006 Proceedings, 10–13 Sept 2006, pp. 769–772Google Scholar
  16. 16.
    R. Barnett, J. Liu, in Proceedings of IEEE CICC, Sept 2007, pp. 393–396Google Scholar
  17. 17.
    G. Balachandran, R. Barnett, IEEE Circuits. Sys. I. 55, 3723–3732 (2009)Google Scholar
  18. 18.
    E. Cantatore, T.C.T. Geuns, G.H. Gelinck, E. van Veenendaal, A.F.A. Gruijthuijsen, L. Schrijnemakers, S. Drews, D.M. de Leeuw, IEEE J. Solid-State Circuits. 42(1), 84–92 (2007)CrossRefGoogle Scholar
  19. 19.
    K. Myny, S. van Winckel, S. Steudel, P. Vicca, S. De Jonge, M.J. Beenhakkers, C.W. Sele, N.A.J.M. van Aerle, G.H. Gelinck, J. Genoe, P. Heremans, ISSCC Digest Technical Papers, Feb 2008, pp. 290–291Google Scholar
  20. 20.
    Y. Ai, S. Gowrisanker, H. Jia, I. Trachtenberg, E. Vogel, R.M. Wallace, B.E. Gnade, R. Barnett, H. Stiegler, H. Edwards, Appl. Phys. Lett. 90, 262105 (2007)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Raymond Barnett
    • 1
  1. 1.Texas InstrumentsTexasUSA

Personalised recommendations