Advertisement

Application of Probiotic Proteomics in Enteric Cytoprotection

  • Hans Christian Beck
  • Søren Feddersen
  • Jørgen Petersen
Chapter

Abstract

Mass spectrometry is at centre-of-stage of modern proteomics. This technology has become an indispensable tool in many areas of molecular biology research. However, this modern proteomics has only to a limited extend been applied in the characterization of proteins involved in probiotic effects such as immunomodulation and adhesion to the gastro intestinal tract of the host. Proteins exhibiting these probiotic effects are most often located on the outer cell surface of the probiotic bacterium. Unfortunately, there are few examples on the exploitation of this sub-proteome using proteomics methods in the literature. These studies indicate that probiotic features are caused by the complex interplay of a variety of proteins rather than one single protein.

Keywords

Probiotic Bacterium Probiotic Strain Electron Transfer Dissociation Lactobacillus Strain Probiotic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK (2007) pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189:4539–4543PubMedCrossRefGoogle Scholar
  2. Bantscheff M, Dumpelfeld B, Kuster B (2004) Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom 18:869–876PubMedCrossRefGoogle Scholar
  3. Baroja ML, Kirjavainen PV, Hekmat S, Reid G (2007) Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol 149:470–479CrossRefGoogle Scholar
  4. Bartow RA, Mcmurray DN (1997) Cellular and humoral immune responses to mycobacterial stress proteins in experimental pulmonary tuberculosis. Tuber Lung Dis 78:185–193PubMedCrossRefGoogle Scholar
  5. Bath K, Roos S, Wall T, Jonsson H (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253:75–82PubMedCrossRefGoogle Scholar
  6. Beck HC, Petersen J (2009) A proteomic strategy for the analysis of the outer cell surface proteome of probiotic bacteria. 18th International mass spectrometry conference, Bremen, Germany, 30 Aug–04 Sept. Poster presentationGoogle Scholar
  7. Beck HC, Madsen SM, Glenting J, Petersen J, Israelsen H, Norrelykke MR, Antonsson M, Hansen AM (2009) Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum. FEMS Microbiol Lett 297:61–66PubMedCrossRefGoogle Scholar
  8. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434PubMedCrossRefGoogle Scholar
  9. Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138:1355–1359PubMedGoogle Scholar
  10. Boschiroli ML, Foulongne, V, O’callaghan D (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4:58–64PubMedCrossRefGoogle Scholar
  11. Brunser O, Gotteland M, Cruchet S (2007) Functional fermented milk products. Nestle Nutr Workshop Ser Pediatr Progr 60:235–247; discussion 247–250CrossRefGoogle Scholar
  12. Commane D, Hughes R, Shortt C, Rowland I (2005) The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res 591:276–289PubMedCrossRefGoogle Scholar
  13. Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10:611–627PubMedCrossRefGoogle Scholar
  14. Frisk A, Ison CA, Lagergard T (1998) GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66:1252–1257PubMedGoogle Scholar
  15. Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65:1071–1077PubMedGoogle Scholar
  16. Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169PubMedCrossRefGoogle Scholar
  17. Herias MV, Hessle C, Telemo E, Midtvedt T, Hanson LA, Wold AE (1999) Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin Exp Immunol 116:283–290PubMedCrossRefGoogle Scholar
  18. Heuvelin E, Lebreton C, Grangette C, Pot B, Cerf-Bensussan N, Heyman M (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4:e5184PubMedCrossRefGoogle Scholar
  19. Hoermannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, Blaut M, Holzlwimmer G, Laschinger M, Haller D (2009) Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One 4:e4365PubMedCrossRefGoogle Scholar
  20. Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852PubMedCrossRefGoogle Scholar
  21. Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30:949–956PubMedCrossRefGoogle Scholar
  22. Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674PubMedCrossRefGoogle Scholar
  23. Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815PubMedCrossRefGoogle Scholar
  24. Larkin TA, Astheimer LB, Price WE (2009) Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 63:238–245PubMedCrossRefGoogle Scholar
  25. Lehto EM, Salminen SJ (1997) Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: only a pH effect? FEMS Immunol Med Microbiol 18:125–132PubMedCrossRefGoogle Scholar
  26. Madsen SM, Glenting J, Vrang A, Ravn P, Riemann HK, Israelsen H, Norrelykke MR, Hansen AM, Antonsson M, Ahrne S, Beck HC (2005) Cell surface-associated glycolytic enzymes from Lactobacillus plantarum 299v mediate adhesion to human epithelial cells and extracellular matrix proteins. J Biotech 118:S142–S142Google Scholar
  27. Mangell P, Lennernas P, Wang M, Olsson C, Ahrne S, Molin G, Thorlacius H, Jeppsson B (2006) Adhesive capability of Lactobacillus plantarum 299v is important for preventing bacterial translocation in endotoxemic rats. Apmis 114:611–618PubMedCrossRefGoogle Scholar
  28. Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255PubMedGoogle Scholar
  29. Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229PubMedGoogle Scholar
  30. Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300(1):57–62PubMedCrossRefGoogle Scholar
  31. Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769PubMedCrossRefGoogle Scholar
  32. Petrof EO, Claud EC, Sun J, Abramova T, Guo Y, Waypa TS, He SM, Nakagawa Y, Chang EB (2009) Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm Bowel Dis 15:1537–1547PubMedCrossRefGoogle Scholar
  33. Prescott SL, Bjorksten B (2007) Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol 120:255–262PubMedCrossRefGoogle Scholar
  34. Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330–2336PubMedCrossRefGoogle Scholar
  35. Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442PubMedGoogle Scholar
  36. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169PubMedCrossRefGoogle Scholar
  37. Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, Sartor RB (2002) Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 8:71–80PubMedCrossRefGoogle Scholar
  38. Servin AL, Coconnier M.-H. (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clinl Gastroenterol 17:741–754CrossRefGoogle Scholar
  39. Spehlmann ME, Eckmann L (2009) Nuclear factor-kappa B in intestinal protection and destruction. Curr Opin Gastroenterol 25:92–99PubMedCrossRefGoogle Scholar
  40. Sutcliffe IC, Harrington DJ (2002) Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148:2065–2077PubMedGoogle Scholar
  41. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468PubMedCrossRefGoogle Scholar
  42. Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14:1585–1596PubMedCrossRefGoogle Scholar
  43. Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101PubMedCrossRefGoogle Scholar
  44. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hans Christian Beck
    • 1
  • Søren Feddersen
  • Jørgen Petersen
  1. 1.The Proteomics GroupDanish Technological InstituteKoldingDenmark

Personalised recommendations