The Classic Surtarbrandur Floras

Part of the Topics in Geobiology book series (TGBI, volume 35)


The classic Surtarbrandur floras of Iceland are 12 Ma (late Serravallian) and belong to the Brjánslækur-Seljá Formation. They make up the most diverse macroflora known from the Miocene of Iceland, with the highest number of exotic angiosperms recorded from this period (Laurophyllum, Liriodendron, Magnolia, Platanus, and Sassafras). Unlike in the older and younger floras, Fagus is absent from the macrofossil and pollen record, suggesting that the older F. friedrichii had not yet been replaced by the later immigrating F. gussonii. The plant assemblages recovered from the Brjánslækur-Seljá Formation represent azonal riparian lowland and upland forests and zonal hardwood forests in the vicinity of a lake followed higher up by mixed broad-leaved deciduous and conifer forests. The plant assemblages reflect the culmination of warm and moist vegetation in Iceland in the late Serravallian. The climatic and vegetation optimum recorded in Iceland for this stage does not reflect the general trend of cooling after the Mid-Miocene Climatic Optimum (17–15 Ma), as seen in many other floras in the northern hemisphere.


Mean Annual Temperature Upland Forest Central Volcano Sandstone Unit Miocene Flora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cenozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR, 316, 1–188.Google Scholar
  2. Armstrong, R. L., Lemann, W. P., & Malde, H. E. (1975). K-Ar dating, Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho. American Journal of Science, 274, 225–252.CrossRefGoogle Scholar
  3. Aulenback, K. R., & LePage, B. A. (1998). Taxodium wallisii sp. nov. – First occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences, 159, 367–390.CrossRefGoogle Scholar
  4. Berggren, W., Kent, D. V., Swisher, C. C. III., & Aubry, M.-P. (1995). A revised Cenozoic geochronology and chronostratigraphy. In W. A. Berggren, D. V. Kent, M.-P. Aubry, & J. Hardenbol (Eds.), Geochronology, time scales and global stratigraphic correlation (pp. 129–212). Tulsa, Oklahoma: SEPM Special Publication 54.Google Scholar
  5. Chaloner, B. W. (1999). Plant and spore compression in sediments. In T. P. Jones & N. P. Rowe (Eds.), Fossil plants and spores: modern techniques (pp. 36–40). London: Geological Society.Google Scholar
  6. Chaney, R. W., & Axelrod, D. I. (1959). Miocene Floras of the Columbia Plateau. Part II. Systematic Considerations (part II, pp. 135–237). Washington, DC.: Carnegie Institution of Washington Publication 617.Google Scholar
  7. Denk, T., Grímsson, F., & Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society, 149, 369–417.CrossRefGoogle Scholar
  8. Flora of China Editorial Committee. (1999). Flora of China, Cycadaceae through Fagacaeae (Vol. 4). St. Louis: Missouri Botanical Garden Press. 453 pp.Google Scholar
  9. Flora of North America Editorial Committee. (1993). Flora of North America North of Mexico, Pteridophytes and Gymnosperms (Vol. 2). New York: Oxford University Press. 496 pp.Google Scholar
  10. Flora of North America Editorial Committee. (1997). Flora of North America North of Mexico, Magnoliophyta: Magnoliidae and Hamamelidae (Vol. 3). New York: Oxford University Press. 616 pp.Google Scholar
  11. Flower, B. P., & Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 537–555.CrossRefGoogle Scholar
  12. Friedrich, W. L. (1966). Zur Geologie von Brjánslaekur (Nordwest-Island) unter besonderen Berücksichtigung der fossilen Flora. Sonderveröffentlichungen des Geologischen Institutes der Universität Köln, 10, 1–110.Google Scholar
  13. Friedrich, W. L., & Símonarson, L. A. (1981). Die fossile Flora Islands: Zeugin der Thule- Landbrücke. Spektrum der Wissenschaft, 10(1981), 22–31.Google Scholar
  14. Grímsson, F. (2007). The Miocene floras of Iceland. Origin and evolution of fossil floras from North-West and Western Iceland, 15 to 6 Ma. Ph.D. thesis, University of Iceland, Reykjavík. 273 pp.Google Scholar
  15. Heer, O. (1868). Flora fossilis arctica 1. Die Fossile Flora der Polarländer enthaltend die in Nordgrönland, auf der Melville-Insel, im Banksland, am Mackenzie, in Island und in Spitzbergen entdeckten fossilen Pflanzen. Zürich: F. Schulthess. 192 pp.CrossRefGoogle Scholar
  16. Iwatsuki, K., Yamazaki, T., Boufford, D. E., & Ohba, H. (Eds.). (2000). Flora of Japan. Vol. 1 Pteridophyta and Gymnospermae. Tokyo: Kodansha. 302 pp., reprint of 1995.Google Scholar
  17. Jóhannesson, H., & Sæmundsson, K. (1989). Geological map of Iceland. 1:500 000. Bedrock Geology (1st ed.). Reykjavík: Icelandic Museum of Natural History and Icelandic Geodetic Survey.Google Scholar
  18. Komarov, V. L. (1970). Flora of the U.S.S.R (Vol. 5). Jerusalem: Israel Program for Scientific Translations. 593 pp.Google Scholar
  19. Köppen, W., & Geiger, R. (1928). Klimakarte der Erde. Wall-map 150 cm × 200 cm. Gotha: Verlag Justus Perthes.Google Scholar
  20. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.CrossRefGoogle Scholar
  21. Kovar-Eder, J., & Kvaček, Z. (2007). The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR-vegetation analysis. Acta Palaeobotanica, 47, 391–418.Google Scholar
  22. Kovar-Eder, J., Jechorek, H., Kvaček, Z., & Parashiv, V. (2008). The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios, 23, 97–111.CrossRefGoogle Scholar
  23. Kryshtofovich, A. N., & Baikovskaya, T. I. (1965). Sarmatian flora of Krynka. Moscow-Leningrad: Russian Academy of Sciences. 134 pp.Google Scholar
  24. Kutuzkina, E. F. (1964). The Sarmatian Flora of Armavir (in Russian). In A. L. Takhtajan (Ed.), Palaeobotanica V (pp. 145–230). Moscow-Leningrad: Nauka.Google Scholar
  25. Kvaček, Z., Velitzelos, D., & Velitzelos, E. (2002). Late Miocene flora of Vegora Macedonia N. Greece. Athens: Korali Publications. 175 pp.Google Scholar
  26. Kvaček, Z., Kováč, M., Kovar-Eder, J., Doláková, N., Jechorek, H., Parashiv, V., Kováčová, M., & Sliva, L. (2006). Miocene evolution of landscape and vegetation in the Central Paratethys. Geologica Carpathica, 57, 295–310.Google Scholar
  27. Landmælingar Íslands. (1984). Uppdráttur Íslands. Blað 13, Barðaströnd. Scale 1:100000.Google Scholar
  28. Mai, H. D. (1995). Tertiäre Vegetationsgeschichte Europas. Jena: Gustav Fischer. 691 pp.Google Scholar
  29. Manchester, S. R. (1999). Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden, 86, 472–522.CrossRefGoogle Scholar
  30. Manchester, S. R., Chen, Z.-D., Lu, A.-M., & Uemura, K. (2009). Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution, 47, 1–42.CrossRefGoogle Scholar
  31. Matthews, J. F., Jr., & Ovenden, L. E. (1990). Late Tertiary Plant Macrofossils from localities in Arctic/Subarctic North America: a review of the data. Arctic, 43, 364–392.Google Scholar
  32. McDougall, I., Kristjansson, L., & Saemundsson, K. (1984). Magnetostratigraphy and geochronology of northwest Iceland. Journal of Geophysical Research, 89, 7029–7060.CrossRefGoogle Scholar
  33. Ohwi, J. (1965). Flora of Japan. Washington, DC: Smithsonian Institution. 1067 pp.Google Scholar
  34. Saemundsson, K. (1979). Outline of the geology of Iceland. Jökull, 29, 7–28.Google Scholar
  35. Schenk, M. F., Thienpont, C.-N., Koopman, W. J. M., Gilissen, L. J. W. J., & Smulders, M. J. M. (2008). Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genetics and Genomes, 4, 911–924.CrossRefGoogle Scholar
  36. Thompson, R. S., Anderson, K. H., and Bartlein, P. J. (1999). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America-Hardwoods. U.S. Geological Survey Professional Paper, 1650-B, 1–423.Google Scholar
  37. Utescher, T., & Mosbrugger, V. (2009). Palaeoflora database. Accessed 27 September 2010.
  38. Wang, C.-W. (1961). The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation, Publ. No. 5. Cambridge, Massachusetts: Harvard University. 282 pp.Google Scholar
  39. White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Giu, G., Jetté, H., & Schweger, C. E. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 293–306.CrossRefGoogle Scholar
  40. Windisch, P. (1886). Beiträge zur Kenntnis der Tertiärflora von Island. Inaugural-Dissertation behufs Erlangung der philosophischen Doctorwürde der Hohen philosophischen Facultät der Universität Leipzig. Halle a. d. S.: Gebauer-Schwetschke’sche Buchdruckerei. 52 pp.Google Scholar
  41. Windisch, P. (1886b). Beiträge zur Kenntniss der Tertiärflora von Island. Zeitschrift für Naturwissenschaften, 4(5), 215–262.Google Scholar
  42. Worm, O. (1655). Museum Wormianum seu historia rerum rariorum. Leiden, Amsterdam: Ex officina Elseviriorum. 389 pp.Google Scholar
  43. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations