Advertisement

Climate Evolution in the Northern North Atlantic – 15 Ma to Present

  • Thomas Denk
  • Friðgeir Grímsson
  • Reinhard Zetter
  • Leifur A. Símonarson
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 35)

Abstract

This chapter evaluates climatic signals from floras of 11 sedimentary rock formations from Iceland spanning the time interval 15–0.8 Ma. From 15 to 12 Ma, the climate was humid warm temperate probably with hot summers (Cfa climate) as evidenced by the presence of taxodiaceous conifers such as Glyptostrobusand Cryptomeriaand warmth-loving angiosperms. The first shift towards cooler conditions occurred between ca 12 and 10 Ma; during this period the Taxodiaceae and warmth-loving angiosperms such as Magnolia,Lauraceae, and Liriodendrondisappeared from the vegetation of Iceland, whereas at the same time, a massive immigration of herbaceous plants and small-leaved Ericaceae is recorded. This shift appears to reflect the transition from a Cfa to a Cfb climate. The second shift was between ca 5.5 and ca 4.4 Ma; after this interval, small-leaved Salixspecies are recorded for the first time and co-occurred with exotic elements such as the large-leaved evergreen Rhododendronsubsection Pontica. Mild (Cfb climate) conditions lasted at least until ca 3.6 Ma. Between ca 3.6 and 2.4 Ma, the switch to the modern Cfc and ET climates occurred. This is reflected by the modern appearance of the Pleistocene floras. While cooling on a global scale occurred immediately after the Mid-Miocene Climatic Optimum at ca 17–15 Ma due to the rapid growth of the Eastern Antarctic Ice Sheet, mild and warm conditions lasted until at least ca 12 Ma in Iceland, underscoring the effect of warm sea currents on regional climate. The shift from a warm-house to a cold-house climate, as reflected in the floras of Iceland, coincided with the onset of large-scale glaciations in the northern hemisphere.

Keywords

Late Miocene Middle Miocene Gulf Stream Mean Annual Temperature North Atlantic Deep Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abreu, V. S., & Haddad, E. A. (1998). Glacioeustatic fluctuations: The mechanism linking stable isotope events and sequence stratigraphy from the Early Oligocene to Middle Miocene. In C.-P. Graciansky, J. Hardenbol, T. Jacquin, & P. R. Vail (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European Basins(pp. 245–260). Tulsa, Oklahoma: SEPM, Special Publications, 60.CrossRefGoogle Scholar
  2. Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cenozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR, 316, 1–188.Google Scholar
  3. Anderson, D. M., & Woodhouse, C. A. (2005). Let all the voices be heard. Nature, 433, 587–588.PubMedCrossRefGoogle Scholar
  4. Bischof, B., Mariano, A. J., & Ryan, E. H. (2003). The North Atlantic drift current. Ocean surface currents. http://oceancurrents.rsmas.miami.edu/atlantic/north-atlantic-drift.html
  5. Browicz, K., & Zieliński, J. (1982). Chorology of trees and shrubs in south-west Asia and adjacent regions(Vol. 1). Warsaw: Polish Scientific Publishers. 172 pp.Google Scholar
  6. Browicz, K. (1983). Chorology of trees and shrubs in south-west Asia and adjacent regions(Vol. 2). Warsaw: Polish Scientific Publishers. 86 pp.Google Scholar
  7. Buchardt, B. (1978). Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. Nature, 275, 121–123.CrossRefGoogle Scholar
  8. Buchardt, B., & Símonarson, L. A. (2003). Isotope palaeotemperatures from the Tjörnes beds in Iceland: Evidence of Pliocene cooling. Palaeogeography, Plaeoclimatology, Palaeoecology, 189, 71–95.CrossRefGoogle Scholar
  9. Cao, K.-F. (1995). Fagus dominance in Chinese montane forests: natural regeneration of Fagus lucida and Fagus hayatae var. pashanica. Ph.D. thesis, Wageningen University, Wageningen, 116 pp.Google Scholar
  10. Denk, T. (2006). Rhododendron ponticum var. sebinensein the Late Pleistocene flora of Hötting, Northern Calcareous Alps: Witness of a climate warmer than today? Veröffentlichungen des Tiroler Landesmuseum Ferdinandeum, 86, 43–66.Google Scholar
  11. Dowsett, H., Barron, J., & Poore, R. (1996). Middle Pliocene sea surface temperatures: A global reconstructions. Marine Micropaleontology, 27, 13–25.CrossRefGoogle Scholar
  12. Dowsett, H. J., Chandler, M. A., & Robinson, M. M. (2009). Surface temperatures of the mid-Pliocene North Atlantic Ocean: Implications for future climate. Philosophical Transactions of the Royal Society A, 367, 69–84.CrossRefGoogle Scholar
  13. Driscoll, N. W., & Haug, G. H. (1998). A short circuit in thermohaline circulation: A cause for Northern Hemisphere glaciation? Science, 282, 436–438.PubMedCrossRefGoogle Scholar
  14. Duque-Caro, H. (1990). Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77, 203–234.CrossRefGoogle Scholar
  15. Eiríksson, J. (2008). Glaciation events in the Pliocene – Pleistocene volcanic succession of Iceland. Jökull, 58, 315–329.Google Scholar
  16. Elias, S. A., & Matthews, J. V., Jr. (2002). Arctic North American seasonal temperatures from the latest Miocene to the Early Pleistocene, based on mutual climatic range analysis of fossil beetle assemblages. Canadian Journal of Earth Sciences, 39, 911–920.CrossRefGoogle Scholar
  17. Erfmeier, A. (2004). Ursachen des Invasionserfolges von Rhododendron ponticum L. auf den Britischen Inseln: Einfluss von Habitat und Genotyp. Ph.D. thesis, University of Göttingen, Göttingen. 88 pp.Google Scholar
  18. Field, B. D., Crundwell, M. P., Lyon, G. L., Mildenhall, D. C., Morgans, H. E. G., Ohneiser, C., Wilson, G. S., Kennett, J. P., & Chanier, F. (2009). Middle Miocene paleoclimate change at Bryce Burn, southern New Zealand. New Zealand Journal of Geology and Geophysics, 52, 321–333.CrossRefGoogle Scholar
  19. Flora of China Editorial Committee. (1999). Flora of China, Cycadaceae through Fagacaeae(Vol. 4). St. Louis: Missouri Botanical Garden Press. 453 pp.Google Scholar
  20. Flora of China Editorial Committee. (2001). Flora of China, Caryophyllaceae through Lardizabalaceae(Vol. 6). St. Louis: Missouri Botanical Garden Press. 510 pp.Google Scholar
  21. Flora of China Editorial Committee. (2008). Flora of China, Menispermaceae through Capparaceae(Vol. 7). St. Louis: Missouri Botanical Garden Press. 500 pp.Google Scholar
  22. Flora of North America Editorial Committee. (1993). Flora of North America North of Mexico, Pteridophytes and Gymncosperms(Vol. 2). New York: Oxford University Press. 496 pp.Google Scholar
  23. Flora of North America Editorial Committee. (1997). Flora of North America North of Mexico, Magnoliophyta: Magnoliidae and Hamamelidae(Vol. 3). New York: Oxford University Press. 616 pp.Google Scholar
  24. Flora of North America Editorial Committee. (2010). Flora of North America North of Mexico, Magnoliophyta: Salicaceae to Brassicaceae(Vol. 7). New York: Oxford University Press. 832 pp.Google Scholar
  25. Flower, B. P., & Kennett, J. P. (1995). Middle Miocene deepwater paleoceanography in the southwest Pacific: Relations with East Antarctic ice sheet development. Paleoceanography, 10, 1095–1112.CrossRefGoogle Scholar
  26. Fukarek, F., Hübel, H., König, P., Müller, G. K., Schuster, R., & Succow, M. (1995). Vegetation. Leipzig: Urania. 420 pp.Google Scholar
  27. Gibbard, P. L., & Cohen, K. M. (2009). Global chronostratigraphical correlation fort he last 2.7 million years. v. 2009. http://www.quaternary.stratigraphy.org.uk/charts/ Google Scholar
  28. Haug, G. H., Tiedemann, R., & Keigwin, L. D. (2004). How the isthmus of Panama put ice in the Arctic. Oceanus, 42(2), 1–4.Google Scholar
  29. Hegi, G. (1966). Illustrierte Flora von Mitteleuropa(2nd ed., Vol. 5). Munich: J. F. Lehmanns. 674 pp.Google Scholar
  30. Henderson-Sellers, A., & Robinson, P. J. (1986). Contemporary climatology. Essex: Longman Scientific & Technical. 439 pp.Google Scholar
  31. Holbourn, A., Kuhnt, W., Schulz, M., & Erlenkeuser, H. (2005). Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438, 483–487.PubMedCrossRefGoogle Scholar
  32. Iwatsuki, K., Yamazaki, T., Boufford, D. E., & Ohba, H. (Eds.). (2000). Flora of Japan. Volume 1 Pteridophyta and Gymnospermae. Tokyo: Kodansha. 302 pp, reprint of 1995.Google Scholar
  33. Iwatsuki, K., Boufford, D. E., & Ohba, H. (Eds.). (2006). Flora of Japan. Volume IIa Angiospermae, Dicotyledonae, Archichlamideae (a). Tokyo: Kodansha. 550 pp.Google Scholar
  34. John, K. E. K., St, & Krissek, L. A. (2002). The late Miocene to Pleistocene ice-rafting history of southeast Greenland. Boreas, 31, 28–35.CrossRefGoogle Scholar
  35. Keller, G., & Barron, J. A. (1983). Paleoceanographic implications of the Miocene deep-sea hiatuses. Geological Society of America Bulletin, 94, 590–613.CrossRefGoogle Scholar
  36. Kim, S. J., & Crowley, T. J. (2000). Increased Pliocene North Atlantic deep water: Cause or consequence of Pliocene warming? Paleoceanography, 15, 451–455.CrossRefGoogle Scholar
  37. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.CrossRefGoogle Scholar
  38. Kvaček, Z., & Rember, W. C. (2000). Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae Geologica, 44, 74–86.Google Scholar
  39. Kvaček, Z., Kováč, M., Kovar-Eder, J., Doláková, N., Jechorek, H., Parashiv, V., Kováčová, M., & Sliva, L. (2006). Miocene evolution of landscape and vegetation in the Central Paratethys. Geologica Carpathica, 57, 295–310.Google Scholar
  40. Larsen, H. C., Saunders, A. D., Clift, P. D., Beget, J., Wei, W., & Spezzaferri, S. (1994). Seven million years of glaciation in Greenland. Science, 264, 952–955.PubMedCrossRefGoogle Scholar
  41. LePage, B. A. (2007). The taxonomy and biogeographic history of GlyptostrobusEndlicher (Cupressaceae). Bulletin of the Peabody Museum of Natural History, 48, 359–426.CrossRefGoogle Scholar
  42. Lewis, A. R., Marchant, D. R., Ashworth, A. C., Hedenäs, L., Hemming, S. R., Johnson, J. V., Leng, M. J., Machlus, M. L., Newton, A. E., Raine, J. I., Willenbring, J. K., Williams, M., & Wolfe, A. P. (2009). Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 10676–10680.CrossRefGoogle Scholar
  43. Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate Diagram World Atlas(CD- Series, Climate and Biosphere). Leiden: Backhuys Publishers.Google Scholar
  44. Luu, N. D. T., & Thomas, P. I. (2004). Conifers of Vietnam. Darwin initiative ‘preservation, rehabilitation and utilisation of Vietnamese Montane forests’ 162/10/017.Google Scholar
  45. Mai, H. D. (1995). Tertiäre Vegetationsgeschichte Europas. Jena: Gustav Fischer. 691 pp.Google Scholar
  46. Matthews, J. V., Jr., & Ovenden, L. E. (1990). Late tertiary plant macrofossils from localities in Arctic/Subarctic North America: A review of the data. Arctic, 43, 364–392.Google Scholar
  47. Matthews, J. V., Jr., Westgate, J. A., Ovenden, L., Carter, L. D., & Fouch, T. (2003). Stratigraphy, fossils, and age of sediments at the upper pit of the lost chicken gold mine: New information on the late Pliocene environment of central Alaska. Quaternary Research, 60, 9–18.CrossRefGoogle Scholar
  48. Maycock, P. F. (1994). The ecology of beech (Fagus grandifoliaEhrh.) forests of the deciduous forests of southeastern North America, and a comparison with the beech (Fagus crenata) forests of Japan. In A. Miyawaki, K. Iwatsukti, & M. M. Grandtner (Eds.), Vegetation in Eastern North America. Vegetation system and dynamics under human activity in the Eastern North American cultural region in comparison with Japan(pp. 351–407). Tokyo: University of Tokyo Press.Google Scholar
  49. McManus, F. J., Oppo, D. W., Keigwin, L. D., Cullen, J. L., & Bond, G. C. (2002). Thermohaline circulation and prolonged interglacial warmth in the North Atlantic. Quaternary Research, 58, 17–21.CrossRefGoogle Scholar
  50. Meusel, H., Jäger, E., & Weinert, E. (1965). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten. Jena: VEB Gustav Fischer. 258 pp.Google Scholar
  51. Milne, R. I. (2004). Phylogeny and biogeography of Rhododendronsubsection Pontica, a group with a Tertiary relict distribution. Molecular Phylogenetics and Evolution, 33, 389–401.PubMedCrossRefGoogle Scholar
  52. Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T., Dickens, G. R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T. C., Onodera, J., O’Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., Stein, R., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P., Jokat, W., & Kristoffersen, Y. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441, 601–605.PubMedCrossRefGoogle Scholar
  53. Ohwi, J. (1965). Flora of Japan. Washington: Smithsonian Institution Press. 1067 pp.Google Scholar
  54. Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.PubMedCrossRefGoogle Scholar
  55. Peters, R. (1997). Beech forests(Geobotany, Vol. 24). Dordrecht: Kluwer Academic Publishers. 169 pp.CrossRefGoogle Scholar
  56. Ramstein, G., Fluteau, F., Besse, J., & Joussaume, S. (1997). Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788–795.CrossRefGoogle Scholar
  57. Raymo, M. E., Grant, B., Horowitz, M., & Rau, G. H. (1996). Mid-Pliocene warmth: Stronger greenhouse and stronger conveyor. Marine Micropaleontology, 27, 313–326.CrossRefGoogle Scholar
  58. Robinson, M. M. (2009). New quantitative evidence of extreme warmth in the Pliocene Arctic. Stratigraphy, 6, 265–275.Google Scholar
  59. Schweitzer, H.-J. (1974). Die “tertiären” Koniferen Spitzbergens. Palaeontographica B, 149, 1–89.Google Scholar
  60. Shevenell, A. E., Kennett, J. P., & Lea, D. W. (2004). Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 305, 1766–1770.PubMedCrossRefGoogle Scholar
  61. Símonarson, L. A., & Leifsdóttir, Ó. E. (2002). Jökultodda á Íslandi. Náttúrufræðingurinn, 71, 72–78.Google Scholar
  62. Sjörs, H. (2004). Regionality. In B. Jonsell (Ed.), Flora nordica. General volume(pp. 87–100). Stockholm: Bergianus Foundation, Royal Academy of Sciences.Google Scholar
  63. Standley, P. C. (1920). Trees and shrubs of Mexico, Gleicheniaceae–Betulaceae. Washington: Government Printing Office.CrossRefGoogle Scholar
  64. Sun, T.-X., Ablaev, A. G., Wang, Y.-F., & Li, C.-S. (2005). Cyclocaryacf. paliurus(Batal.) Iljinskaja (Juglandaceae) from the Hunchun Formation (Eocene), Jilin Province, China. Journal of Integrative Plant Biology, 47, 1281–1287.CrossRefGoogle Scholar
  65. Tedford, R. H., & Harrington, C. R. (2003). An Arctic mammal fauna from the Early Pliocene of North America. Nature, 425, 388–390.PubMedCrossRefGoogle Scholar
  66. Thiede, J., & Myhre, A. M. (1995). Non-steady behaviour in the Cenozoic polar north Atlantic system – the onset and variability of northern hemisphere glaciations. Philosophical Transactions of the Royal Society of London Series A-Physical Sciences and Engineering, 352(1699), 373–385.CrossRefGoogle Scholar
  67. Thiede, J., Winkler, A., Wolfwelling, T., Eldholm, O., Myhre, A. M., Baumann, K. H., Henrich, R., & Stein, R. (1998). Late Cenozoic history of the polar North Atlantic – results from ocean drilling. Quaternary Science Reviews, 17, 185–208.CrossRefGoogle Scholar
  68. Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (1999a). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America- Introduction and Conifers. U.S. Geological Survey Professional Paper, 1650-A, 1–269.Google Scholar
  69. Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (1999b). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America-Hardwoods. U.S. Geological Survey Professional Paper,1650-B, 1–423.Google Scholar
  70. Thompson, R. S., Anderson, K. H., Bartlein, P. J., & Smith, S. A. (2000). Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America-Additional conifers, hardwoods, and monocots. U.S. Geological Survey Professional Paper,1650-C, 1–386.Google Scholar
  71. Thompson, R. S., Anderson, K. H., Strickland, L. E., Shafer, S. L., Pelltier, R. T., & Bartlein, P. J. (2006). Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America-Alaska species and ecoregions. U.S. Geological Survey Professional Paper,1650-D, 1–342.Google Scholar
  72. Utescher, T. & Mosbrugger, V. (2009). Palaeoflora Database. http://www.geologie.unibonn.de/Palaeoflora
  73. Walter, H., & Lieth, H. (1960). Klimadiagramm-Weltatlas(Vol. 1). Jena: VEB Gustav Fischer.Google Scholar
  74. Walter, H., & Lieth, H. (1964). Klimadiagramm-Weltatlas(Vol. 2). Jena: VEB Gustav Fischer.Google Scholar
  75. White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Liu, G., Jetté, H., & Schweger, C. E. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: Tectonic and global correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 293–306.CrossRefGoogle Scholar
  76. Woodruff, F., & Savin, S. M. (1989). Miocene deepwater oceanography. Paleoceanography, 4, 87–140.CrossRefGoogle Scholar
  77. Wright, J. D., Miller, K. G., & Fairbanks, R. G. (1991). Evolution of modern deepwater circulation: Evidence from the Late Miocene Southern Ocean. Paleoceanography, 6, 275–290.CrossRefGoogle Scholar
  78. Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.PubMedCrossRefGoogle Scholar
  79. Zhao, Q., Jian, Z., Wang, J., Cheng, X., Huang, B., Xu, J., Zhou, Z., Fang, D., & Wang, P. (2001). Neogen oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Science in China (Series D), 44, 934–942.CrossRefGoogle Scholar
  80. Zhu, Z., & Song, Z. (1999). Scientific survey of Shennongjia nature reserve. Beijing: China Forestry Publishing House. 286 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Denk
    • 1
  • Friðgeir Grímsson
    • 2
  • Reinhard Zetter
    • 2
  • Leifur A. Símonarson
    • 3
  1. 1.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations