Advertisement

Equilibration of Inertial Instability in Rotating Flow

  • Daan D. J. A. van Sommeren
  • George F. Carnevale
  • Rudolf C. Kloosterziel
  • Paolo Orlandi
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 28)

Abstract

Unstable vortices in a rotating environment may breakup due to the combined effect of inertial and barotropic instabilities. Recent advances in the theory of inertial instability of vortices provide a prediction of the equilibrated state if inertial instability acts alone. This prediction combined with what is known about barotropic instability gives the possibility of predicting the end state of a vortex breakup subject to both inertial and barotropic instability.

Keywords

Azimuthal Velocity Instability Growth Rate Rossby Number Azimuthal Mode Barotropic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carnevale G, Kloosterziel R (1994) Emergence and evolution of triangular vortices. J Fluid Mech 259:305–331 CrossRefGoogle Scholar
  2. Carton X, Legras B (1994) The life-cycle of tripoles in two-dimensional incompressible flows. J Fluid Mech 267:53–82 CrossRefGoogle Scholar
  3. Carton X, Fierl G, Polvani L (1989) The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys Lett 9:339–344 CrossRefGoogle Scholar
  4. Drazin P, Reid W (1984) Hydrodynamic Stability. Cambridge University Press Google Scholar
  5. Flierl G (1988) On the instability of geostrophic vortices. J Fluid Mech 197:349–388 CrossRefGoogle Scholar
  6. Kloosterziel R, Carnevale G (1992) Formal stability of circular vortices. J Fluid Mech 242:249–278 CrossRefGoogle Scholar
  7. Kloosterziel R, Carnevale G (1999) On the evolution and saturation of instabilities of two-dimensional isolated circular vortices. J Fluid Mech 388:217–257 CrossRefGoogle Scholar
  8. Kloosterziel R, van Heijst G (1991) An experimental study of unstable barotropic vortices in a rotating fluid. J Fluid Mech 223:1–24 CrossRefGoogle Scholar
  9. Kloosterziel R, Carnevale G, Orlandi P (2007) Inertial instability in rotating and stratified fluids: barotropic vortices. J Fluid Mech 583:379–412 CrossRefGoogle Scholar
  10. Orlandi P (2000) Fluid flow phenomena: a numerical toolkit, vol 55. Kluwer Academic Publishers, Dordrecht, The Netherlands Google Scholar
  11. Orlandi P, Carnevale G (1999) Evolution of isolated vortices in a rotating fluid of finite depth. J Fluid Mech 381:239–269 CrossRefGoogle Scholar
  12. Rayleigh L (1880) On the stability, or instability, of certain fluid motions. Proc London Math Soc 11:57–70 CrossRefGoogle Scholar
  13. Rayleigh L (1916) On the dynamics of revolving fluids. Proc R Soc London Ser A 93:148–154 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Daan D. J. A. van Sommeren
    • 1
  • George F. Carnevale
  • Rudolf C. Kloosterziel
  • Paolo Orlandi
  1. 1.Technische Universiteit EindhovenEindhoventhe Netherlands

Personalised recommendations