Advertisement

The HyperCASL algorithm

  • David G. Dritschel
  • Jérôme Fontane
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 28)

Abstract

This paper outlines a major new extension to the diabatic Contour-Advective Semi-Lagrangian (CASL) algorithm  (Dritschel and Ambaum, 1997, 2006). The extension, called the ‘HyperCASL’ (HCASL) algorithm, advects material potential vorticity contours like in CASL, but treats diabatic forcing or damping with a Vortex-In-Cell (VIC) algorithm. As a result, HCASL is fully Lagrangian regarding advection. A conventional underlying grid is used as in CASL for ‘inversion’, namely for obtaining the advecting velocity from the potential vorticity.

Keywords

Potential Vorticity Point Vortex Grid Length Contour Dynamic Node Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Andrews, D.G., Holton, J.R., Leovy, C.B.: Middle Atmosphere Dynamics. Academic Press (1987) Google Scholar
  2. [2]
    Christiansen, J.P., Zabusky, N.J.: Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219–243 (1973) CrossRefGoogle Scholar
  3. [3]
    Dritschel, D.G.: Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 77, 240–266 (1988) CrossRefGoogle Scholar
  4. [4]
    Dritschel, D.G.: Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Computer Phys. Rep. 10, 77–146 (1989) CrossRefGoogle Scholar
  5. [5]
    Dritschel, D.G., Ambaum, M.H.P.: A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields. Quart. J. Roy. Meteorol. Soc. 123, 1097–1130 (1997) CrossRefGoogle Scholar
  6. [6]
    Dritschel, D.G., Polvani, L.M., Mohebalhojeh, A.R.: The contour-advective semi-Lagrangian algorithm for the shallow water equations. Mon. Wea. Rev. 127, 1551–1565 (1999) CrossRefGoogle Scholar
  7. [7]
    Dritschel, D.G., Viúdez, Á.: A balanced approach to modelling rotating stably-stratified geophysical flows. J. Fluid Mech. 488, 123–150 (2003) CrossRefGoogle Scholar
  8. [8]
    Dritschel, D.G., Ambaum, M.H.P.: The diabatic contour advective semi-Lagrangian algorithm. Mon. Weather Rev. 134, 2503–2514 (2006) CrossRefGoogle Scholar
  9. [9]
    Dritschel, D.G., McIntyre, M.E.: Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855–874 (2008) CrossRefGoogle Scholar
  10. [10]
    Dritschel, D.G., Scott, R.K., Macaskill, C., Gottwald, G.A., Tran, C.V.: Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501 (2008) CrossRefGoogle Scholar
  11. [11]
    Dritschel, D.G., Scott, R.K.: On the simulation of nearly inviscid two-dimensional turbulence. J. Comput. Phys. 228, 2707–2711 (2009) CrossRefGoogle Scholar
  12. [12]
    Durran, R.R.: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer (1999) Google Scholar
  13. [13]
    Fontane, J., Dritschel, D.G.: The HyperCASL Algorithm: a new approach to the numerical simulation of geophysical flows. J. Comput. Phys. 228, 6411–6425 (2009) CrossRefGoogle Scholar
  14. [14]
    Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press (1982) Google Scholar
  15. [15]
    Mohebalhojeh, A.R., Dritschel, D.G.: The diabatic contour-advective semi-Lagrangian algorithms for the spherical shallow water equations. Mon. Wea. Rev. 137, 2979–2994 (2009) CrossRefGoogle Scholar
  16. [16]
    Panetta, R.L.: Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50, 2073–2106 (1993) CrossRefGoogle Scholar
  17. [17]
    Pierrehumbert, R.T.: The hydrologic cycle in deep time climate problems. Nature 419, 191–198 (2002) CrossRefGoogle Scholar
  18. [18]
    Rhines, P.B.: Jets. Chaos 4, 313–339 (1994) CrossRefGoogle Scholar
  19. [19]
    Schaerf, T.M.: On contour crossings in contour-advective simulations of geophysical fluid flows, Ph.D. Thesis, University of Sydney (2006) Google Scholar
  20. [20]
    Smolarkiewicz, P.K., Pudykiewicz, P.: A class of semi-Lagrangian approximations for fluids. J. Atmos. Sci. 49, 2082–2096 (1992) CrossRefGoogle Scholar
  21. [21]
    Zabusky, N.J., Hughes, M.H., Roberts, K.V.: Contour dynamics for the Euler equations in 2 dimensions. J. Comput. Phys. 30, 96–106 (1979) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of St AndrewsSt AndrewsScotland

Personalised recommendations