The structure of zonal jets in shallow water turbulence on the sphere

  • R. K. Scott
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 28)


This paper reviews some recent results concerning the formation and structure of zonal jets in forced shallow water turbulence on the surface of a rotating sphere. Attention is given to the role of the Rossby deformation radius in determining the degree to which jets align zonally; to the limiting case of the axisymmetric “potential vorticity staircase”; and to the issue of equatorial superrotation, which is shown to arise robustly when energy is dissipated through a representation of radiative relaxation.


Rossby Wave Potential Vorticity Giant Planet Relative Vorticity Deformation Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Andrews, D. G., & McIntyre, M. E. 1976. Planetary waves in horizontal and vertical shear: asymptotic theory for equatorial waves in weak shear. J. Atmos. Sci., 33, 2049–2053. CrossRefGoogle Scholar
  2. [2]
    Baldwin, M. P., Rhines, P. B., Huang, H.-P., & McIntyre, M. E. 2007. The Jet-Stream Conundrum. Science, 315, 467–468. CrossRefGoogle Scholar
  3. [3]
    Cho, J. Y-K., & Polvani, L. M. 1996a. The emergence of jets and vortices in freely-evolving shallow-water turbulence on a sphere. Phys. Fluids, 8, 1531–1552. CrossRefGoogle Scholar
  4. [4]
    Cho, J. Y-K., & Polvani, L. M. 1996b. The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science, 273, 335–337. CrossRefGoogle Scholar
  5. [5]
    Cho, J. Y-K., de la Torre Juárez, M., Ingersoll, A. P., & Dritschel, D. G. 2001. A high-resolution, three-dimensional model of Jupiter’s Great Red Spot. J. Geophys. Res., 106, 5099–5105. CrossRefGoogle Scholar
  6. [6]
    Danilov, S., & Gurarie, D. 2004. Scaling, spectra and zonal jets in beta-plane turbulence. Phys. Fluids, 16, 2592–2603. CrossRefGoogle Scholar
  7. [7]
    Dritschel, D. G., & McIntyre, M. E. 2008. Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci., 65, 855–874. CrossRefGoogle Scholar
  8. [8]
    Dunkerton, T. J., & Scott, R. K. 2008. A barotropic model of the angular momentum conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci., 65, 1105–1136. CrossRefGoogle Scholar
  9. [9]
    Galperin, B., Sukoriansky, S., & Huang, H.-P. 2001. Universal n −5 spectrum of zonal flows on giant planets. Phys. Fluids, 13, 1545–1548. CrossRefGoogle Scholar
  10. [10]
    Huang, H.-P., & Robinson, W. A. 1998. Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci., 55, 611–632. CrossRefGoogle Scholar
  11. [11]
    Huang, H.-P., Galperin, B., & Sukoriansky, S. 2001. Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids, 13, 225–240. CrossRefGoogle Scholar
  12. [12]
    Iacono, R., Struglia, M. V., Ronchi, C., & Nicastro, S. 1999. High-resolution simulations of freely decaying shallow-water turbulence on a rotating sphere. Il Nuovo Cimento, 22C, 813–821. Google Scholar
  13. [13]
    Ingersoll, A. P., Dowling, T. E., Gierasch, P. J., Orton, G. S., Read, P. L., Sanchez-Lavega, A., Showman, A. P., Simon-Miller, A. A., & Vasavada, A. R. 2004. Dynamics of Jupiter’s atmosphere. Cambridge Univ. Press. Pages 105–128. Google Scholar
  14. [14]
    Maltrud, M. E., & Vallis, G. K. 1991. Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech., 228, 321–342. Google Scholar
  15. [15]
    McIntyre, M. E. 1982. How well do we understand the dynamics of stratospheric warmings? J. Meteorol. Soc. Japan, 60, 37–65. Special issue in commemoration of the centennial of the Meteorological Society of Japan, ed. K. Ninomiya. Google Scholar
  16. [16]
    McIntyre, M. E. 2008. Potential-vorticity inversion and the wave–turbulence jigsaw: some recent clarifications. Adv. Geosci., 15, 47–56. CrossRefGoogle Scholar
  17. [17]
    McIntyre, M. E., & Palmer, T. N. 1983. Breaking planetary waves in the stratosphere. Nature, 305, 593–600. CrossRefGoogle Scholar
  18. [18]
    Nozawa, T., & Yoden, S. 1997. Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids, 9, 2081–2093. CrossRefGoogle Scholar
  19. [19]
    Okuno, A., & Masuda, A. 2003. Effect of horizontal divergence on the geostrophic turbulence on a beta-plane: suppression of the Rhines effect. Phys. Fluids, 15, 56–65. CrossRefGoogle Scholar
  20. [20]
    Rhines, P. B. 1975. Waves and turbulence on a beta-plane. J. Fluid Mech., 69, 417–443. CrossRefGoogle Scholar
  21. [21]
    Scott, R. K., & Polvani, L. M. 2007. Forced-dissipative shallow water turbulence on the sphere and the atmospheric circulation of the gas planets. J. Atmos. Sci., 64, 3158–3176. CrossRefGoogle Scholar
  22. [22]
    Scott, R. K., & Polvani, L. M. 2008. Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett., 35, L24202. CrossRefGoogle Scholar
  23. [23]
    Smith, K. S. 2004. A local model for planetary atmospheres forced by small-scale convection. J. Atmos. Sci., 61, 1420–1433. CrossRefGoogle Scholar
  24. [24]
    Sukoriansky, S., Galperin, B., & Dikovskaya, N. 2002. Universal spectrum of two-dimensional turbulence on rotating sphere and some basic features of atmospheric circulations on giant planets. Phys. Rev. Lett., 89, 124501. CrossRefGoogle Scholar
  25. [25]
    Sukoriansky, S., Dikovskaya, N., & Galperin, B. 2007. On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci., 64, 3312–3327. CrossRefGoogle Scholar
  26. [26]
    Theiss, J. 2004. Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence. J. Phys. Oceanogr., 34, 1663–1678. CrossRefGoogle Scholar
  27. [27]
    Vallis, G. K. 2006. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press. CrossRefGoogle Scholar
  28. [28]
    Vallis, G. K., & Maltrud, M. E. 1993. Generation of mean flows on a beta plane and over topography. J. Phys. Oceanogr., 23, 1346–1362. CrossRefGoogle Scholar
  29. [29]
    Williams, G. P. 1978. Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci., 35, 1399–1424. CrossRefGoogle Scholar
  30. [30]
    World Meteorological Organization. 2007. Scientific Assessment of Ozone Depletion 2006 (Global Ozone Research and Monitoring Project - Report No. 50). Geneva: World Meteorological Organization. Google Scholar
  31. [31]
    Yoden, S., & Yamada, M. 1993. A numerical experiment on two-dimensional decaying turbulence on a rotating sphere. J. Atmos. Sci., 50, 631–643. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.School of MathematicsUniversity of St AndrewsSt AndrewsScotland

Personalised recommendations