Skip to main content

A Tutorial Review on Sporadic E Layers

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

The sporadic E layers (Es) form in the dynamo region of the ionosphere when metallic ions of meteoric origin are converged vertically in a wind shear. This paper provides a comprehensive update on sporadic E, a topic that has been studied for many years. The aim is to render useful information and physical understanding for both the general and specialized reader, and construct an integrated picture of sporadic E through a critical synthesis of recent findings. The basic aspects of the layer windshear theory are reviewed and then selected observations are presented which are tested against the theoretical predictions. The emphasis is placed on the tidal wind control of the diurnal and semidiurnal variability and altitude descent of sporadic E layers. There is now enough evidence to suggest that mid- and low-latitude sporadic E is not as “sporadic” as the name implies but a regularly occurring ionospheric phenomenon. This suggests that E layer physics could also be incorporated in existing atmosphere-ionosphere coupling models. Furthermore, the present review summarizes recent findings which provide physical insight into long-going problems and questions about the seasonal dependence and the global occurrence of Es. The experimental results, which are in favor of the windshear theory, imply that the key agents controlling sporadic E are: tidal wind atmospheric dynamics, the Earth’s horizontal magnetic field component, and the meteoric deposition of metallic material in the lower thermosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, Jacobi C (2008) A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys Res Lett 35:L14809. http://doi:10.1029/2008GL034158

    Article  Google Scholar 

  • Axford WI (1963) The formation and vertical movement of dense ionized layers in the ionosphere. J Geophys Res 68:769

    Article  Google Scholar 

  • Bishop RL, Earle GD (2003) Metallic ion transport associated with midlatitude intermediate layer development. J Geophys Res 108:1019

    Article  Google Scholar 

  • Chapman S, Lindzen RS (1970) Atmospheric tides. D. Reidel, Hingham, MA

    Google Scholar 

  • Chimonas G, Axford WI (1968) Vertical movement of temperate zone sporadic E layer. J Geophys Res 73:111

    Article  Google Scholar 

  • Christakis N, Haldoupis C, Zhou Q, Meek C (2009) Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. Ann Geophys 27:923–931

    Article  Google Scholar 

  • Djuth FT, Sulzer MP, Gonzales SA, Mathews JD, Elder JH (2004) A continuum of gravity waves in the Arecibo thermosphere. Geophys Res Let 31:L16801. http://doi:10.1029/2003GL019376

    Article  Google Scholar 

  • Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. http://doi:10.1929/2007JA012737

    Article  Google Scholar 

  • Haldoupis C, Meek C, Christakis N, Pancheva D, Bourdillon A (2006) Ionogram height-time intensity observations of descending sporadic E layers at mid-latitude. J Atmos Solar-Terr Phys 68:539

    Article  Google Scholar 

  • Haldoupis C, Pancheva D (2002) Planetary waves and midlatitude sporadic E layers: strong experimental evidence for a close relationship. J Geophys Res 107. http://doi:10.1029/2001JA000212

  • Haldoupis C, Pancheva D (2006) Terdiurnal tidelike variability in sporadic E layers. J Geophys Res 111:A07303. http://doi:10.1029/2005JA011522

    Article  Google Scholar 

  • Haldoupis C, Pancheva D, Mitchell NJ (2004) A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J Geophys Res 109:A02302. http://doi:10.1029/2003JA010253

    Article  Google Scholar 

  • Haldoupis C, Pancheva D, Singer W, Meek C, MacDougall J (2007) An explanation for the seasonal dependence of midlatitude sporadic E layers. J Geophys Res 112:A06315. http://doi:10.1029/2007JA012322

    Article  Google Scholar 

  • Harper RM (1997) Tidal winds in the 100- to 200-km region at Arecibo. J Geophys Res 82:3243

    Article  Google Scholar 

  • Hocke K, Tsuda T (2001) Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys Res Lett 28:2815–2818

    Article  Google Scholar 

  • Hocke K, Igarashi K, Nakamura M, Wilkinson P, Wu J, Pavelyev A, Wickert J (2001) Global sounding of sporadic E layers by the GPS/MET radio occultation experiment. J Atmos Solar-Terr Phys 63:1973–1980

    Article  Google Scholar 

  • Hysell DL, Yamamoto M, Fukao S (2000) Imaging radar observations and theory of type I and type II quasiperiodic echoes. J Geophys Res 107:1360

    Article  Google Scholar 

  • Janches D, Palo SE, Lau EM, Avery SK, Avery JP, de la Pena S, Makarov NA (2004) Diurnal and seasonal variability of the meteoric flux at the South Pole measured with radars. Geophys Res Lett 31:L20807. http://doi:10.1029/2004GL021104

    Article  Google Scholar 

  • Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics, 2nd edn. Academic, San Diego, CA, p 281

    Google Scholar 

  • Larsen MF (2000) A shear instability seeding mechanism for quasiperiodic echoes. J Geophys Res 105(24):931

    Google Scholar 

  • Larsen MF (2002) Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. Geophys Res Lett 107:1215. http://doi:10.1029/2001JA000218

    Article  Google Scholar 

  • Larsen MF, Liu AZ, Gardner CS, Kelley MC, Collins S, Friedman J, Hecht JH (2004) Observations of overturning in the upper mesosphere and lower thermosphere. J Geophys Res 109:D02S04. http://doi:10.1029/2002JD003076

    Article  Google Scholar 

  • Lau EM, Avery SK, Avery JP, Janches D Palo SE, Schafer R, Makarov NA (2006) Statistical characterization of meteor trail distribution at the south pole as seen by a VHF interferometric meteor radar. Radio Sci 41:RS4007. http://doi:10.1029/2005RS003247

    Article  Google Scholar 

  • MacDougall JW, Plane JM, Jayachandran PT (2000) Polar cap Sporadic E: part 2, modeling. J Atmos Solar-Terr Phys 62:1169–1176

    Article  Google Scholar 

  • Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Solar-Terr Phys 60:413

    Article  Google Scholar 

  • Pancheva D, Haldoupis C, Meek CE, Manson AH, Mitchell NJ (2003) Evidence of a role for modulated atmospheric tides in the dependence of sporadic E on planetary waves. J Geophys Res 108. http://doi:10.1029/2002JA009788

  • Singer W, von Zahn U, Weiss J (2004) Diurnal and annual variations of meteor rates at the arctic circle. Atmos Chem Phys 4:1355–1363

    Article  Google Scholar 

  • Whitehead JD (1961) The formation of the sporadic E layer in the temperate zones. J Atmos Solar-Terr Phys 20:49

    Article  Google Scholar 

  • Whitehead JD (1989) Recent work on midlatitude and equatorial sporadic E. J Atmos Solar-Terr Phys 51:401

    Article  Google Scholar 

  • Wu DL (2006) Small-scale fluctuations and scintillations in high-resolution GPS/CHAMP SNR and phase data. J Atmos Solar-Terr Phys 68:999–1017

    Article  Google Scholar 

  • Wu DL, Ao CO, Hajj GA, de la Torre Juarez M, Mannucci J (2005) Sporadic E morphology from GPS-CHAMP radio occultation. J Geophys Res 110:A01306. http://doi:10.1029/2004JA010701

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank Dora Pancheva, Chris Meek, Sergei Shalimov, Qihou Zhou, Nikos Christakis, Alain Bourdillon, and Glenn Hussey, with whom I worked jointly the last several years in researching midlatitude sporadic E layers. Also wish to express my gratitude to Christina Arras for kindly providing Fig. 29.9 of this chapter. ELKE, University of Crete provided support for this work through grant 3116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Haldoupis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Haldoupis, C. (2011). A Tutorial Review on Sporadic E Layers. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_29

Download citation

Publish with us

Policies and ethics