Advertisement

A Tutorial Review on Sporadic E Layers

  • Christos Haldoupis
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The sporadic E layers (Es) form in the dynamo region of the ionosphere when metallic ions of meteoric origin are converged vertically in a wind shear. This paper provides a comprehensive update on sporadic E, a topic that has been studied for many years. The aim is to render useful information and physical understanding for both the general and specialized reader, and construct an integrated picture of sporadic E through a critical synthesis of recent findings. The basic aspects of the layer windshear theory are reviewed and then selected observations are presented which are tested against the theoretical predictions. The emphasis is placed on the tidal wind control of the diurnal and semidiurnal variability and altitude descent of sporadic E layers. There is now enough evidence to suggest that mid- and low-latitude sporadic E is not as “sporadic” as the name implies but a regularly occurring ionospheric phenomenon. This suggests that E layer physics could also be incorporated in existing atmosphere-ionosphere coupling models. Furthermore, the present review summarizes recent findings which provide physical insight into long-going problems and questions about the seasonal dependence and the global occurrence of Es. The experimental results, which are in favor of the windshear theory, imply that the key agents controlling sporadic E are: tidal wind atmospheric dynamics, the Earth’s horizontal magnetic field component, and the meteoric deposition of metallic material in the lower thermosphere.

Keywords

Wind Shear Meridional Wind Vertical Wind Shear Neutral Wind Semidiurnal Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I wish to thank Dora Pancheva, Chris Meek, Sergei Shalimov, Qihou Zhou, Nikos Christakis, Alain Bourdillon, and Glenn Hussey, with whom I worked jointly the last several years in researching midlatitude sporadic E layers. Also wish to express my gratitude to Christina Arras for kindly providing Fig. 29.9 of this chapter. ELKE, University of Crete provided support for this work through grant 3116.

References

  1. Arras C, Wickert J, Beyerle G, Heise S, Schmidt T, Jacobi C (2008) A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys Res Lett 35:L14809. http://doi:10.1029/2008GL034158 CrossRefGoogle Scholar
  2. Axford WI (1963) The formation and vertical movement of dense ionized layers in the ionosphere. J Geophys Res 68:769CrossRefGoogle Scholar
  3. Bishop RL, Earle GD (2003) Metallic ion transport associated with midlatitude intermediate layer development. J Geophys Res 108:1019CrossRefGoogle Scholar
  4. Chapman S, Lindzen RS (1970) Atmospheric tides. D. Reidel, Hingham, MAGoogle Scholar
  5. Chimonas G, Axford WI (1968) Vertical movement of temperate zone sporadic E layer. J Geophys Res 73:111CrossRefGoogle Scholar
  6. Christakis N, Haldoupis C, Zhou Q, Meek C (2009) Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo. Ann Geophys 27:923–931CrossRefGoogle Scholar
  7. Djuth FT, Sulzer MP, Gonzales SA, Mathews JD, Elder JH (2004) A continuum of gravity waves in the Arecibo thermosphere. Geophys Res Let 31:L16801. http://doi:10.1029/2003GL019376 CrossRefGoogle Scholar
  8. Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. http://doi:10.1929/2007JA012737 CrossRefGoogle Scholar
  9. Haldoupis C, Meek C, Christakis N, Pancheva D, Bourdillon A (2006) Ionogram height-time intensity observations of descending sporadic E layers at mid-latitude. J Atmos Solar-Terr Phys 68:539CrossRefGoogle Scholar
  10. Haldoupis C, Pancheva D (2002) Planetary waves and midlatitude sporadic E layers: strong experimental evidence for a close relationship. J Geophys Res 107. http://doi:10.1029/2001JA000212
  11. Haldoupis C, Pancheva D (2006) Terdiurnal tidelike variability in sporadic E layers. J Geophys Res 111:A07303. http://doi:10.1029/2005JA011522 CrossRefGoogle Scholar
  12. Haldoupis C, Pancheva D, Mitchell NJ (2004) A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J Geophys Res 109:A02302. http://doi:10.1029/2003JA010253 CrossRefGoogle Scholar
  13. Haldoupis C, Pancheva D, Singer W, Meek C, MacDougall J (2007) An explanation for the seasonal dependence of midlatitude sporadic E layers. J Geophys Res 112:A06315. http://doi:10.1029/2007JA012322 CrossRefGoogle Scholar
  14. Harper RM (1997) Tidal winds in the 100- to 200-km region at Arecibo. J Geophys Res 82:3243CrossRefGoogle Scholar
  15. Hocke K, Tsuda T (2001) Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys Res Lett 28:2815–2818CrossRefGoogle Scholar
  16. Hocke K, Igarashi K, Nakamura M, Wilkinson P, Wu J, Pavelyev A, Wickert J (2001) Global sounding of sporadic E layers by the GPS/MET radio occultation experiment. J Atmos Solar-Terr Phys 63:1973–1980CrossRefGoogle Scholar
  17. Hysell DL, Yamamoto M, Fukao S (2000) Imaging radar observations and theory of type I and type II quasiperiodic echoes. J Geophys Res 107:1360CrossRefGoogle Scholar
  18. Janches D, Palo SE, Lau EM, Avery SK, Avery JP, de la Pena S, Makarov NA (2004) Diurnal and seasonal variability of the meteoric flux at the South Pole measured with radars. Geophys Res Lett 31:L20807. http://doi:10.1029/2004GL021104 CrossRefGoogle Scholar
  19. Kelley MC (2009) The earth’s ionosphere: plasma physics and electrodynamics, 2nd edn. Academic, San Diego, CA, p 281Google Scholar
  20. Larsen MF (2000) A shear instability seeding mechanism for quasiperiodic echoes. J Geophys Res 105(24):931Google Scholar
  21. Larsen MF (2002) Winds and shears in the mesosphere and lower thermosphere: Results from four decades of chemical release wind measurements. Geophys Res Lett 107:1215. http://doi:10.1029/2001JA000218 CrossRefGoogle Scholar
  22. Larsen MF, Liu AZ, Gardner CS, Kelley MC, Collins S, Friedman J, Hecht JH (2004) Observations of overturning in the upper mesosphere and lower thermosphere. J Geophys Res 109:D02S04. http://doi:10.1029/2002JD003076 CrossRefGoogle Scholar
  23. Lau EM, Avery SK, Avery JP, Janches D Palo SE, Schafer R, Makarov NA (2006) Statistical characterization of meteor trail distribution at the south pole as seen by a VHF interferometric meteor radar. Radio Sci 41:RS4007. http://doi:10.1029/2005RS003247 CrossRefGoogle Scholar
  24. MacDougall JW, Plane JM, Jayachandran PT (2000) Polar cap Sporadic E: part 2, modeling. J Atmos Solar-Terr Phys 62:1169–1176CrossRefGoogle Scholar
  25. Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Solar-Terr Phys 60:413CrossRefGoogle Scholar
  26. Pancheva D, Haldoupis C, Meek CE, Manson AH, Mitchell NJ (2003) Evidence of a role for modulated atmospheric tides in the dependence of sporadic E on planetary waves. J Geophys Res 108. http://doi:10.1029/2002JA009788
  27. Singer W, von Zahn U, Weiss J (2004) Diurnal and annual variations of meteor rates at the arctic circle. Atmos Chem Phys 4:1355–1363CrossRefGoogle Scholar
  28. Whitehead JD (1961) The formation of the sporadic E layer in the temperate zones. J Atmos Solar-Terr Phys 20:49CrossRefGoogle Scholar
  29. Whitehead JD (1989) Recent work on midlatitude and equatorial sporadic E. J Atmos Solar-Terr Phys 51:401CrossRefGoogle Scholar
  30. Wu DL (2006) Small-scale fluctuations and scintillations in high-resolution GPS/CHAMP SNR and phase data. J Atmos Solar-Terr Phys 68:999–1017CrossRefGoogle Scholar
  31. Wu DL, Ao CO, Hajj GA, de la Torre Juarez M, Mannucci J (2005) Sporadic E morphology from GPS-CHAMP radio occultation. J Geophys Res 110:A01306. http://doi:10.1029/2004JA010701 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of CreteHeraklion, CreteGreece

Personalised recommendations