Advertisement

Ionosphere–Thermosphere Coupling in the Low-Latitude Region

  • Shigeto Watanabe
  • Tsutomu Kondo
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The zonal neutral wind in the thermosphere flows strongly at the Earth’s magnetic dip equator instead of the geographic equator around 20 magnetic local time (MLT). On the other hand, the fast zonal plasma drift occurs in the low-latitude F region of evening ionosphere, but the velocity decreases at the magnetic dip equator. Therefore, the fast plasma drift velocity structure forms an arch in the frame of latitude and altitude in the evening. The fast zonal neutral wind occurs inside of the arch. Since the fast zonal plasma drift is strongly associated with equatorial ionization anomaly (EIA), we suggest that the ionosphere–thermosphere coupling associated with F-region dynamo is significantly important in the phenomenology of the low-latitude, F-region ionosphere and thermosphere. The fast neutral wind occurring in the evening F region over the magnetic dip equator may result in atmospheric super-rotation in the low-latitude thermosphere.

Keywords

Neutral Wind Magnetic Local Time Magnetic Latitude Plasma Drift Equatorial Ionization Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks H. Liu, H. Luhr, and M.A. Abdu for discussing data and its analyses. The author thanks the use of the DE-2 data in NSSDC of NASA.

References

  1. Aggson TL, Maynard NC, Herrero FA, Mayr HG, Brace LH, Liebrecht MC (1987) Geomagnetic equatorial anomaly in zonal plasma flow. J Geophys Res 92:311–315CrossRefGoogle Scholar
  2. Appleton EV (1946) Two anomalies in the ionosphere. Nature 157:691CrossRefGoogle Scholar
  3. Balan N, Bailey GJ, Moffett RJ (1994) Modeling studies of ionospheric variations during an intense solar cycle. J Geophys Res 99:17,467–17,475Google Scholar
  4. Coley WR, Heelis RA, Spencer NW (1994) Comparison of low-latitude ion and neutral zonal drift using DE2 data. J Geophys Res 99:341–348CrossRefGoogle Scholar
  5. Fejer BG, Kudeki E, Farley DT (1985) Equatorial F region zonal plasma drift. J Geophys Res 90:12249–12255CrossRefGoogle Scholar
  6. Fuller-Rowell TJ, Codrescu MV, Fejer BG, Borer W, Marcos F, Anderson DN (1997) Dynamics of the low-latitude thermosphere: quiet and disturbed conditions. J Atmos Solar-Terr Phys 61:1533–1540CrossRefGoogle Scholar
  7. Hanson WB, Heelis RA, Power RA, Lippincott CR, Zucarro DR, Holt BJ, Harmon LH, Sanatani S (1981) The retarding potential analyzer for Dynamics Explorer-B. Space Sci Instrum 5:503Google Scholar
  8. Heelis RA, Kendall PC, Moffett RJ, Rishbeth H, Windle DW (1974) Electrical coupling of the E and F regions and its effect on F region drifts and winds. Planet Space Sci 22:743CrossRefGoogle Scholar
  9. Krehbiel JP, Brace LH, Theis RF, Pinkus WH, Kaplan RB (1981) The Dynamics Explorer Langmuir probe instrument. Space Sci Instr 5:493–502Google Scholar
  10. Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, Chen CH, Hsiao CC (2007) Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys Res Lett 34:L19101. http://doi:10.1029/2007GL030741 CrossRefGoogle Scholar
  11. Liu H, Luhr H, Watanabe S, Kohler W, Henize V, Visser P (2006) Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J Geophys Res 111:A09S29. http://doi:10.1029/2005JA011415 Google Scholar
  12. Liu H, Luhr H, Watanabe S (2007) Climatology of the equatorial mass density anomaly. J Geophys Res 112:A05305. http://doi:10.1029/2006JA012199 CrossRefGoogle Scholar
  13. Liu H, Watanabe S, Kondo T (2009) Fast thermospheric wind jet at the earth’s dip equator. Geophys Res Lett 36:L08103. http://doi:10.1029/2009GL037377 CrossRefGoogle Scholar
  14. Liu L, Wan W (2001) The evolution of equatorial trough of ionospheric f-region ionization. Terr Atmos Oceanic Sci 12:559–565Google Scholar
  15. Liu L, Luan X, Wan W, Lei J, Ning B (2004) Solar activity variations of equivalent winds derived from global ionosonde data. J Geophys Res A12305. http://doi:16910.1029/2004JA010574
  16. Maruyama N, Watanabe S, Fuller-Rowell TJ (2003) Dynamic and energetic coupling in the equatorial ionosphere and thermosphere. J Geophys Res 108(A11):1396. http://doi:10.1029/2002JA009599 CrossRefGoogle Scholar
  17. Namba S, Maeda K-I (1939) Radio wave propagation. Corona, Tokyo, 86ppGoogle Scholar
  18. Oberheide J, Wu Q, Killeen TL, Hagan ME, Roble RG (2006) Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations. J Geophys Res 111:A10S03. http://doi:10.1029/2005JA011491 CrossRefGoogle Scholar
  19. Otsuka Y, Shiokawa K, Ogawa T, Wilkinson P (2005) Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys Res Lett 31:CiteID L15803CrossRefGoogle Scholar
  20. Raghavarao R, Wharton LE, Spencer NW, Mayr HG, Brace LH (1991) An equatorial temperature and wind anomaly (ETWA). Geophys Res Lett 18(9):1193–1196CrossRefGoogle Scholar
  21. Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19:601–604CrossRefGoogle Scholar
  22. Rishbeth H (1972) Thermospheric winds and the F-region: a review. J Atmos Solar-Terr Phys 183(34):1–47CrossRefGoogle Scholar
  23. Spencer NW, Wharton LE, Niemann HB, Hedin AE, Carignan GR, Maurer JC (1981) The Dynamics Explorer wind and temperature spectrometer. Space Sci Instrum 5:417–428Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Earth and Planetary SciencesHokkaido UniversityHokkaidoJapan

Personalised recommendations