Advertisement

Atmospheric Tides and Planetary Waves: Recent Progress Based on SABER/TIMED Temperature Measurements (2002–2007)

  • Dora Pancheva
  • Plamen Mukhtarov
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The present paper is focused on the global spatial (altitude and latitude) structure, seasonal and interannual variability of the atmospheric tides (migrating and nonmigrating) and planetary waves (stationary and zonally traveling) derived from the SABER/TIMED temperature measurements for full 6 years (January 2002–December 2007). The mean wave amplitudes and phases are presented for the latitude range 50°N–50°S and from the lower stratosphere to the lower thermosphere (20–120 km). The main advantage of the results presented in this paper is that the migrating and nonmigrating tides as well as all significant planetary waves found in the SABER/TIMED temperatures are extracted simultaneously from the raw data (downloaded from the SABER web site temperatures). Therefore, using the same analysis techniques and the same data set makes it possible to get a consistent picture of the wave activity in the stratosphere-mesosphere-lower thermosphere system. Concerning the atmospheric tides, in addition to the migrating diurnal and semidiurnal tides the following nonmigrating tides also received significant attention: diurnal eastward propagating with zonal wavenumbers 2 and 3 and westward propagating with zonal wavenumber 2 and semidiurnal westward propagating with zonal wavenumber 3 and eastward propagating with zonal wavenumbers 2 and 3. A special attention is paid to the climatology and interannual variability of the temperature SPW1 and its origin in the lower thermosphere, as well as for following zonally propagating planetary waves: the ~5-day Rossby wave; ~6-day Kelvin wave, the ~10-day W1 wave and ~16-day W1 wave. The presented detailed picture of the spatial (altitude, latitude) structure and temporal variability of the considered atmospheric tides and planetary waves can serve as a benchmark and guide for future numerical modeling studies aimed at better understanding the stratosphere-mesosphere-lower thermosphere coupling by tidal and planetary wave patterns.

Keywords

Planetary Wave Tidal Amplitude Diurnal Tide Quasi Biennial Oscillation Semidiurnal Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful to the SABER team for the access to the data on http://saber.gats-inc.com.

References

  1. Achatz U, Grieger N, Schmidt H (2008) Mechanisms controlling the diurnal solar tide: analysis using a GCM and a linear model. J Geophys Res 113:A8. http://doi:10.1029/2007JA9012967 CrossRefGoogle Scholar
  2. Akmaev RA, Fuller-Rowell TJ, Wu F, Forbes JM, Zhang X, Anghel AF, Iredell MD, Moorthi S, Juang H-M (2008) Tidal variability in the lower thermosphere: comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED. Geophys Res Lett 35:L03810. http://doi:10.1029/2007GL032584 CrossRefGoogle Scholar
  3. Allen DR, Stanford JL, Elson LS, Fishbein EF, Froidevaux L, Waters JW (1997) The 4-day wave as observed from the Upper Atmosphere Research Satellite Microwave Limb Sounder. J Atmos Sci 54:420–434CrossRefGoogle Scholar
  4. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, San Diego, CA, p 489Google Scholar
  5. Angelats i Coll, M, Forbes JM (2002) Nonlinear interactions in the upper atmosphere: the s=1 and s=3 nonmigrating semidiurnal tides. J Geophys Res 107:A8. http://doi:10.1029/2001JA900179 CrossRefGoogle Scholar
  6. Avery SK, Vincent RA, Phillips A, Manson AH, Fraser GJ (1989) High-latitude tidal behavior in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys 51:595–608CrossRefGoogle Scholar
  7. Azeem SMI, Killeen TL, Johnson RM, Wu Q, Gell DA (2000) Space-time analysis of TIMED Doppler Interferometer (TIDI) measurements. Geophys Res Lett 27(20):3297–3300CrossRefGoogle Scholar
  8. Azeem SMI, Talaat ER, Sivjee GG, Liu H-L, Roble RG (2005) Observational study of the 4-day wave in the mesosphere preceding the sudden stratospheric warming events during 1995 and 2002. Geophys Res Lett 32:L15804. http://doi:10.1029/2005GL023393 CrossRefGoogle Scholar
  9. Baumgaertner AJG, Jarvis MJ, McDonald AJ, Fraser GJ (2006) Observations of the wavenumber 1 and 2 components of the semi-diurnal tide over Antarctica. J Atmos Solar-Terr Phys 68:1195–1214CrossRefGoogle Scholar
  10. Bernard R (1981) Variability of the semi-diurnal tide in the upper mesosphere. J Atmos Solar-Terr Phys 43:663–674CrossRefGoogle Scholar
  11. Burrage MD, Hagan ME, Skinner WR, Wu DL, Hays PB (1995) Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys Res Lett 22(19):2641–2644. http://doi:10.1029/95GL02635 CrossRefGoogle Scholar
  12. Cevolani G (1991) Strato-meso-thermosphere coupling at mid-latitudes in the course of mid-winter stratwarmings during DYANA. Geophys Res Lett 18:1987–1990CrossRefGoogle Scholar
  13. Chang L, Palo S, Hagan M, Richter J, Garcia R, Riggin D, Fritts D (2008) Structure of the migrating diurnal tide in the Whole Atmosphere Community Climate Model (WACCM). Adv Space Res 41:1398–1407CrossRefGoogle Scholar
  14. Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational. Gordon and Breach, New York, NY, 200 ppGoogle Scholar
  15. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109CrossRefGoogle Scholar
  16. Chshyolkova T, Manson AH, Meek CE, Avery SK, Thorsen D, MacDougall JW, Hocking, W, Murayama Y, Igarashi K (2006) Planetary wave coupling processes in the middle atmosphere (30–90 km): A study involving MetO and MFR data. J Atmos Solar-Terr Phys 68:353–368CrossRefGoogle Scholar
  17. Clark RR, Salah JE (1991) Propagation of the solar semidiurnal tide in the mesosphere and lower thermosphere at midlatitudes. J Geophys Res 96:1129–1133CrossRefGoogle Scholar
  18. Coy L, Siskind DE, Eckermann SD, McCormack JP, Allen DR, Hogan TF (2005) Modeling the August 2002 minor warming event. Geophys Res Lett 32:L07808. http://doi:10.1029/2005GL022400 CrossRefGoogle Scholar
  19. England SL, Maus S, Immel TJ, Mende SB (2006a) Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. http://doi:10.1029/2006GL027465 CrossRefGoogle Scholar
  20. England SL, Immel TJ, Sagawa E, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006b) Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J Geophys Res 111:A10S19. http://doi:10.1029/2006JA011795 CrossRefGoogle Scholar
  21. Ern M, Lehmann C, Kaufmann M, Riese M (2009) Spectral wave analysis at the mesopause from SCIAMACHY airglow data compared to SABER temperature spectra. Ann Geophys 27:407–416CrossRefGoogle Scholar
  22. Espy PJ, Hibbins RE, Riggin DM, Fritts DC (2005) Mesospheric planetary waves over Antarctica during 2002. Geophys Res Lett 32:L21804. http://doi:10.1029/2005GL023886 CrossRefGoogle Scholar
  23. Fedulina IN, Pogoreltsev AI, Vaughan G (2004) Seasonal, interannual and short-term variability of planetary waves in UKMO assimilated fields. Q J R Meteor Soc A 130(602):2445–2457CrossRefGoogle Scholar
  24. Forbes JM, Garret HB (1979) Theoretical studies of atmospheric tides. Rev Geophys 17:1951–1981CrossRefGoogle Scholar
  25. Forbes JM, Hagan ME, Miyahara S, Vial F, Manson AH, Meek CE, Portnyagin YI (1995) Quasi 16-day oscillation in the mesosphere and lower thermosphere. J Geophys Res 100:9149–9163CrossRefGoogle Scholar
  26. Forbes JM, Hagan M, Zhang X (2007) Seasonal cycle of nonmigrating diurnal tides in the MLT region due to tropospheric heating rates from the NCEP/NCAR Reanalysis Project. Adv Space Res 39:1347–1350. http://doi:10.1016/j.asr.2003.09.076 CrossRefGoogle Scholar
  27. Forbes JM, Hagan ME, Zhang X, Hamilton K (1997) Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere. Ann Geophys 15:1165–1175CrossRefGoogle Scholar
  28. Forbes JM, Russell J, Miyahara S, Zhang X, Palo S, Mlynczak M, Mertens CJ, Hagan ME (2006) Troposphere-thermosphere tidal coupling as measure by the SABER instrument on TIMED during July–September 2002. J Geophys Res 111:A10S06. http://doi:10.1029/2005JA011492 CrossRefGoogle Scholar
  29. Forbes JM, Wu D (2006) Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J Atmos Sci 63:1776–1797CrossRefGoogle Scholar
  30. Forbes JM, Zhang X, Talaat ER, Ward W (2003) Nonmigrating diurnal tides in the thermosphere. J Geophys Res 108:A1, 1033. http://doi:10.1029/2002JA009262
  31. Forbes JM, Zhang X, Ward W, Talaat ER (2002) Climatological features of mesosphere and lower thermosphere stationary planetary waves within ±40 latitude. J Geophys Res 107(D17):4322. http://doi:10.1029/2001JD001232 CrossRefGoogle Scholar
  32. Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. http://doi:10.1029/2007JA012737 CrossRefGoogle Scholar
  33. Forbes JM, Zhang X, Palo SE, Russell J, Mertens CJ, Mlynczak M (2009) Kelvin waves in stratosphere, mesosphere and lower thermosphere temperatures as observed by TIMED/SABER during 2002–2006. Earth Planets Space 61:447–453Google Scholar
  34. García-Comas M, Lopez-Puertas M, Marshall BT, Wintersteiner PP, Funke B, Bermejo-Pantaleon D, Mertens CJ, Remsberg EE, Gordley LL, Mlynczak MG, Russell JM (2008) Errors in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) kinetic temperature caused by non-local-thermodynamic-equilibrium model parameters. J Geophys Res 113:D24106. http://doi:10.1029/2008JD010105 CrossRefGoogle Scholar
  35. Grieger N, Volodin EM, Schmitz G, Hoffmann P, Manson AH, Fritts DC, Igarashi K, Singer W (2002) General Circulation Model results on migrating and nonmigrating tides in the mesosphere and lower thermosphere. Part 1: comparison with observations. J Atmos Solar Terr Phys 64:897–911CrossRefGoogle Scholar
  36. Groves GV (1982a) Hough components of water vapor heating. J Solar-Atmos Terr Phys 44:281–290CrossRefGoogle Scholar
  37. Groves GV (1982b) Hough components of ozone heating. J Solar-Atmos Terr Phys 44:111–121CrossRefGoogle Scholar
  38. Hagan ME, Burrage MD, Forbes JM, Hackney J, Randel WJ, Zhang X (1999a) GSWM-98: Results for migrating solar tides. J Geophys Res 104(A4):6813–6827. http://doi:10.1029/1998JA900125 CrossRefGoogle Scholar
  39. Hagan ME, Burrage MD, Forbes JM, Hackney J, Randel WJ, Zhang X (1999b) QBO effects on the diurnal tide in the upper atmosphere. Earth Planets Space 51:571– 578Google Scholar
  40. Hagan M, Forbes J, Vial F (1995) On modeling migrating solar tides. Geophys Res Lett 22:893–896CrossRefGoogle Scholar
  41. Hagan ME, Forbes JM (2002) Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J Geophys Res 107:4754. http://doi:10.1029/2001JD001236 CrossRefGoogle Scholar
  42. Hagan ME, Forbes JM (2003) Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J Geophys Res 108:A2, 1062. http://doi:10.1029/2002JA009466 CrossRefGoogle Scholar
  43. Hagan M, Vial F, Forbes J (1992) Variability in the upper propagating semidiurnal tide due to effects of QBO in the lower atmosphere. J Atmos Solar-Terr Phys 54:1465–1474CrossRefGoogle Scholar
  44. Hagan ME (1996) Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J Geophys Res 101:D16, 21213–21222CrossRefGoogle Scholar
  45. Hagan ME, Maute A, Roble RG, Richmond AD, Immel TJ, England SL (2007) Connections between deep tropical clouds and the Earth’s ionosphere. Geophys Res Lett 34:L20109. http://doi:10.1029/2007GL030142 CrossRefGoogle Scholar
  46. Hagan ME, Roble RG, Hackney J (2001) Modeling thermospheric tides. J Geophys Res 106:12739–12752CrossRefGoogle Scholar
  47. Hagan ME, Roble RG (2001) Modeling diurnal tidal variability with the NCAR TIME-GCM. J Geophys Res 106:24869–24882CrossRefGoogle Scholar
  48. Haldoupis C, Pancheva D (2002) Planetary waves and midlatitude sporadic E layers; strong experimental evidence for a close relationship. J Geophys Res 107:A6. http://doi:10.1029/2001JA000212 Google Scholar
  49. Hamilton K (1981) Latent heat release as a possible forcing mechanism for atmospheric tides. Mon Weather Rev 109:3–17CrossRefGoogle Scholar
  50. Hartmann DL (1983) Baroclinic instability of the polar night jet stream. J Atmos Sci 36:1141–1154Google Scholar
  51. Hirota I, Kuroi K, Shiotani M (1990) Midwinter warmings in the Southern hemisphere stratosphere in 1988. Q J R Meteor Soc 116:929–941CrossRefGoogle Scholar
  52. Huang FT, Mayr HG, Reber CA, Killeen T, Russell JM, Mlynczak M, Skinner W, Mengel JG (2006a) Diurnal variations of temperature and winds inferred from TIMED and UARS measurements. J Geophys Res 111:A10S04. http://doi:10.1029/2005JA011426 CrossRefGoogle Scholar
  53. Huang FT, Mayr HG, Reber CA, Russell JM, Mlynczak M, Mengel JG (2006b) Stratospheric and mesospheric temperature variations for quasi-biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS). Ann Geophys 24:2131–2149CrossRefGoogle Scholar
  54. Huang FT, Reber CA (2004) Nonmigrating semidiurnal and diurnal tides at 95 km based on wind measurements from the High Resolution Doppler Imager on UARS. J Geophys Res 109:D10110. http://doi:10.1029/2003JD004442 CrossRefGoogle Scholar
  55. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. http://doi:10.1029/2006GL026161 CrossRefGoogle Scholar
  56. Jacobi C, Kürschner D, Muller HG, Pancheva D, Mitchell NJ, Naujokat B (2003) Response of the mesopause region dynamics to the February 2001 stratospheric warming. J Atmos Solar-Terr Phys 65:843–855CrossRefGoogle Scholar
  57. Jacobi Ch, Portnyagin Yu, Solovjova T, Hoffmann P, Singer W, Fahrutdinova A, Ishmuratov R, Beard G, Mitchell N, Muller G, Schminder R, Kürschner D, Manson A, Meek C (1999) Climatology of the semidiurnal tide at 52°N–56°N from ground-based radar wind measurements 1985–1995. J Atmos Solar-Terr Phys 61:975–991CrossRefGoogle Scholar
  58. Kato S (1989) Non-migrating tides. J Atmos Terr Phys 51:673–682CrossRefGoogle Scholar
  59. Khattatov BV, Geller MA, Yudin VA, Hays PB (1997b) Diurnal migrating tide as seen by the high resolution Doppler imager/UARS: 2. Monthly mean global zonal and vertical velocities, pressure, temperature and inferred dissipation. J Geophys Res 102(D4):4423–4435. http://doi:10.1029/96JD03654 CrossRefGoogle Scholar
  60. Khattatov BV, Yudin VA, Geller MA, Hays PB, Vincent RA (1997a) Diurnal migrating tide as seen by the high resolution Doppler imager/UARS: 1. Monthly mean global meridional winds. J Geophys Res 102(D4):4405–4422. http://doi:10.1029/96JD03655 CrossRefGoogle Scholar
  61. Kong AKH, Charles PA, Kuulkers E (1998) Long-term X-ray variability in GX 354-0. New Astronomy 3(5):301–307CrossRefGoogle Scholar
  62. Krüger K, Naujokat B, Labitzke K (2005) The unusual midwinter warming in the Southern Hemisphere 2002: A comparison to Northern Hemisphere phenomena. J Atmos Sci 62:603–613CrossRefGoogle Scholar
  63. Labitzke K, van Loon H (1999) The stratosphere: phenomena, history and relevance. Springer, New York, NYGoogle Scholar
  64. Lait LR, Stanford JL (1988) Fast, long-lived features in the polar stratosphere. J Atmos Sci 45(24):3800–3809CrossRefGoogle Scholar
  65. Lau K-M, Sheu PJ (1988) Annual cycle, quasibiennial oscillation and southern oscillation in global precipitation. J Geophys Res 93:10975–10988CrossRefGoogle Scholar
  66. Lieberman RS (1991) Nonmigrating diurnal tides in the equatorial middle atmosphere. J Atmos Sci 48:1112–1123CrossRefGoogle Scholar
  67. Lieberman R, Oberheide J, Hagan M, Remsberg E, Gordley L (2004) Variability of diurnal tides and planetary waves during November 1978–May 1979. J Atmos Solar-Terr Phys 66:517–528CrossRefGoogle Scholar
  68. Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. http://doi:10.1029/2007GL029265 CrossRefGoogle Scholar
  69. Liu H-L, Roble RG (2002) A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J Geophys Res 107(D23):4695. http://doi:10.1029/2001JD001533 CrossRefGoogle Scholar
  70. Liu H-L, Roble RG (2005) Dynamical Coupling of the stratosphere and mesosphere in the 2002 Southern Hemisphere major stratospheric sudden warming. Geophys Res Lett 32:L13804. http://doi:10.1029/2005GL022939 CrossRefGoogle Scholar
  71. Manney GL, Nathan TR, Stanford JL (1988) Barotropic stability of realistic stratospheric jets. J Atmos Sci 45:2545–2555CrossRefGoogle Scholar
  72. Manson AH, Meek CE, Hagan M, Hall C, Hocking W, MacDougall J, Franke S, Riggin D, Fritts D, Vincent R, Burrage M (1999) Seasonal variations of the semi-diurnal tides in the MLT: multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model. J Atmos Sol-Terr Phys 61:809–828CrossRefGoogle Scholar
  73. Manson AH, Meek CE, Schminder R, Kürschner D, Clark RR, Müller HG, Vincent RA Phillips A, Fraser GJ, Singer W, Kazimirovsky ES (1990) Tidal winds from the MLT global radar network during the first LTCS campaign September 1987. J Atmos Solar-Terr Phys 52:175–183CrossRefGoogle Scholar
  74. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494CrossRefGoogle Scholar
  75. Mayr HG, Mengel JG (2005) Interannual variations of the diurnal tide in the mesosphere generated by the quasi-biennial oscillation. J Geophys Res 110:D10111. http://doi:10.1029/2004JD005055 CrossRefGoogle Scholar
  76. McLandress C (1997) Seasonal variability of the diurnal tide: results from the Canadian middle atmosphere general circulation model. J Geophys Res 102:D25, 29747–29764CrossRefGoogle Scholar
  77. McLandress C (2002a) The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere, Part II: the role of tidal heating and zonal mean winds. J Atmos Sci 59:907–922CrossRefGoogle Scholar
  78. McLandress C (2002b) Interannual variations of the diurnal tide in the mesosphere induced by a zonal-mean wind oscillation in the tropics. Geophys Res Lett 29(9):1305. http://doi:10.1029/2001GL014551 CrossRefGoogle Scholar
  79. McLandress C, Rochon CY, Shepherd GG, Solheim BH, Thuillier G, Vial F (1994) The meridional wind component of the thermospheric tides observed by WINDII on UARS. Geophys Res Lett 21:2417–2420CrossRefGoogle Scholar
  80. McLandress C, Shepherd GG, Solheim BH (1996) Satellite observations of thermospheric tides: results from the Wind Imaging Interferometer on UARS. J Geophys Res 101(D2):4093–4114. http://doi:10.1029/95JD03359 CrossRefGoogle Scholar
  81. McLandress C, Ward WE (1994) Tidal/gravity wave interactions and their influence on the large scale dynamics of the middle atmosphere: model results. J Geophys Res 99:8139–8156CrossRefGoogle Scholar
  82. Mertens CJ et al (2001) Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm earth limb emission under non-LTE conditions. Geophys Res Lett 28:1391–1394CrossRefGoogle Scholar
  83. Mertens CJ et al (2004) SABER observations of mesospheric temperature and comparisons with falling sphere measurements taken during the 2002 summer MaCWINE campaign. Geophys Res Lett 31:J03105. http://doi:10.1029/2003GL018605 CrossRefGoogle Scholar
  84. Mitchell NJ, Pancheva D, Middleton H, Hagan M (2002) Mean winds and tides in the Arctic mesosphere/lower thermosphere region and comparison with the GSWM. J Geophys Res 106:A1. http://doi:10.1029/2001JA900127 Google Scholar
  85. Miyahara S, Miyoshi Y, Yamashita K (1999) Variations of migrating and nonmigrating tides simulated by the middle atmosphere circulation model at Kyushu University. Adv Space Res 24:1549–1558CrossRefGoogle Scholar
  86. Miyoshi Y (1999) Numerical simulation of the 5-day and 16-day waves in the mesopause region. Earth Planets Space 51:763–772Google Scholar
  87. Miyoshi Y, Hirooka T (1999) A numerical experiment of excitation of the 5-day wave by a GCM. J Atmos Sci 56:1698–1707CrossRefGoogle Scholar
  88. Miyoshi Y, Hirooka T (2003) Quasi-biennial variation of the 5-day wave in the stratosphere. J Geophys Res 108:D19, 4620. http://doi:10.1029/2002JD003145 CrossRefGoogle Scholar
  89. Mukhtarov P, Pancheva D, Andonov B (2009) Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J Geophys Res 114:A02309. http://doi:10.1029/2008JA013759 CrossRefGoogle Scholar
  90. Mukhtarov P, Pancheva D, Andonov B (2010) Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002–2007). J Geophys Res 115:A06315. http://doi:10.1029/2009JA015156 CrossRefGoogle Scholar
  91. Oberheide J, Forbes JM (2008) Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys Res Lett 35:L04816. http://doi:10.1029/2007GL032397 CrossRefGoogle Scholar
  92. Oberheide J, Gusev OA (2002) Observations of migrating and nonmigrating diurnal tides in the equatorial lower thermosphere. Geophys Res Lett 29:2167. http://doi:10.1029/2002GL016213 CrossRefGoogle Scholar
  93. Oberheide J, Hagan ME, Roble RG, Offermann D (2002) Sources of nonmigrating tides in the tropical middle atmosphere. J Geophys Res 107:4567. http://doi:10.1029/2002JD002220 CrossRefGoogle Scholar
  94. Oberheide J, Wu Q, Killeen TL, Hagan ME, Roble RG (2007) A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data. J Atmos Solar-Terr Phys 69:2203–2218CrossRefGoogle Scholar
  95. Palo SE, Forbes JM, Zhang X, Russell JM, Mertens CJ, Mlynczak MG, Burns GB, Espy PJ, Kawahara TD (2005) Planetary wave coupling from the stratosphere to the thermosphere during the 2002 Southern Hemisphere pre-stratwarm period. Geophys Res Lett 32:L23809. http://doi:10.1029/2005GL0242298 CrossRefGoogle Scholar
  96. Palo SE, Forbes JM, Zhang X, Russell III JM, Mlynczak MG (2007) An eastward propagating two-day wave: evidence for nonlinear planetary wave and tidal coupling in the mesosphere and lower thermosphere. Geophys Res Lett 34:L07807. http://doi:10.1029/2006GL027728 CrossRefGoogle Scholar
  97. Pancheva D, Mukhtarov P, Mitchell NJ, Beard AG, Muller HG (2000) Comparative study of neutral wind and tidal variability in the lower thermosphere above Bulgaria and UK. Ann Geophys 18:1304–1315CrossRefGoogle Scholar
  98. Pancheva D et al (2002) Global-scale tidal structure in the mesosphere & lower thermosphere during the PSMOS campaign summer-99 and comparison with the Global Scale Wave Model. J Atmos Solar-Terr Phys 64:1011–1035CrossRefGoogle Scholar
  99. Pancheva DV, Mitchell NJ (2004) Planetary waves and variability of the semidiurnal tide in the mesosphere and lower thermosphere over Esrange (68°N, 21°E) during winter. J Geophys Res 109:A08307. http://doi:10.1029/2004JA010433 CrossRefGoogle Scholar
  100. Pancheva DV, Mukhtarov PJ, Andonov BA (2007) Zonally symmetric oscillations in the Northern hemisphere stratosphere during the winter of 2003/2004. Geophys Res Lett 34:L04807. http://doi:10.1029/2006GL028666 CrossRefGoogle Scholar
  101. Pancheva D, Mukhtarov P, Mitchell NJ, Merzlyakov E, Smith AK, Andonov B, Singer W, Hocking W, Meek C, Manson A, Murayama Y (2008a) Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J Geophys Res 113:D12105. http://doi:10.1029/2007JD009011 CrossRefGoogle Scholar
  102. Pancheva D, Mukhtarov P, Mitchell NJ, Andonov B, Merzlyakov E, Singer W, Murayama Y, Kawamura S, Xiong J, Wan W, Hocking W, Fritts D, Riggin D, Meek C, Manson A (2008b) Latitudinal wave coupling of the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. Ann Geophys 26:467–483CrossRefGoogle Scholar
  103. Pancheva D, Mukhtarov P, Mitchell N, Fritts D, Riggin D, Takahashi H, Batista P, Clemesha B, Gurubaran S, Ramkumar G (2008c) Planetary wave coupling (5–6-day waves) in the low latitude atmosphere-ionosphere system. J Atmos Solar-Terr Phys 70:101–122CrossRefGoogle Scholar
  104. Pancheva D, Mukhtarov P, Andonov B, Mitchell NJ, Forbes JM (2009a) Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 1, Comparison with the UKMO temperature results. J Atmos Solar-Terr Phys 71:61–74CrossRefGoogle Scholar
  105. Pancheva D, Mukhtarov P, Andonov B, Mitchell NJ, Forbes JM (2009b) Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 2, Altitude and latitude planetary wave structure. J Atmos Solar-Terr Phys 71:75–87,CrossRefGoogle Scholar
  106. Pancheva D, Mukhtarov P, Andonov B (2009c) Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004. Ann Geophys 27:975–987CrossRefGoogle Scholar
  107. Pancheva D, Mukhtarov P, Andonov B (2009d) Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007). Ann Geophys 27:687–703CrossRefGoogle Scholar
  108. Pancheva D, Mukhtarov P, Andonov B, Forbes JM (2010a) Global distribution and climatological features of the 5–6-day planetary waves seen in the SABER/TIMED temperatures (2002–2007). J Atmos Solar-Terr Phys 72:26–37CrossRefGoogle Scholar
  109. Pancheva D, Mukhtarov P, Andonov B (2010b) Reply to Manson et al’s comment on “Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007)”. Ann Geophys 28:677–685CrossRefGoogle Scholar
  110. Pancheva D, Mukhtarov P, Andonov B (2010c) Global distribution, seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007). Adv Space Res 46:257–274. http://doi:10.1016/j.asr.2010.03.026 CrossRefGoogle Scholar
  111. Pogoreltsev AI, Sukhanova SA (1993) Simulation of the global structure of stationary planetary waves in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys 55(1):33–40CrossRefGoogle Scholar
  112. Remsberg EE, Marshall BT, García-Comas M, Krueger D, Lingenfelser GS, Martin-Torres J, Mlynczak MG, Russell JM, Smith AK, Zhao Y, Brown C, Gordley LL, Lopez-Gonzales MJ, Lopez-Puertas M, She C-Y, Taylor MJ, Thompson RE (2008) Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J Geophys Res 113:D17101. http://doi:10.1029/2008JD0100113 CrossRefGoogle Scholar
  113. Riggin DM, Fritts DC, Jarvis MJ, Jones GOL (1999) Spatial structure of the 12-hour wave in the Antarctic as observed by radar. Earth, Planets Space 51:621–628Google Scholar
  114. Riggin D, Liu H-L, Lieberman RS et al (2006) Observations of the 5-day wave in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys 68:323–339CrossRefGoogle Scholar
  115. Russell III JM, Mlynczak MG, Gordley LL, Tansock J, Esplin R (1999) An overview of the SABER experiment and preliminary calibration results. Proceedings of the SPIE, 44th annual meeting, Denver, CO, 18–23 July: v. 3756, pp 277–288Google Scholar
  116. Salby ML (1982) Sampling theory for asynoptic satellite observations. Part 1: Space-time spectra, resolution, and aliasing. J Atmos Sci 39:2577–2600CrossRefGoogle Scholar
  117. She CY et al (2004) Tidal perturbations and variability in the mesopause region over Fort Collins, CO (41 N, 105 W): continuous multi-day temperature and wind lidar observations. Geophys Res Lett 31:L2411. http://doi:10.1029/2004GL021165 CrossRefGoogle Scholar
  118. Shepherd MG, Wu DL, Fedulina IN, Gurubaran S, Russell JM, Mlynczak MG, Shepherd GG (2007) Stratospheric warming effects on the tropical mesospheric temperature field. J Atmos Sol-Terr Phys 69:2309–2337CrossRefGoogle Scholar
  119. Shiotani M, Shimoda N, Hirota I (1993) Inter-annual variability of the stratospheric circulation in the Southern Hemisphere. Q J R Meteor Soc 119:531–546CrossRefGoogle Scholar
  120. Sivjee GG, Walterscheid RL, McEwen DJ (1994) Planetary wave disturbances in the arctic winter mesopause over Eureka (80°N). Planet Space Sci 42:973CrossRefGoogle Scholar
  121. Smith AK (1996) Longitudinal variations in mesospheric winds: evidence for gravity wave filtering by planetary waves. J Atmos Sci 53:1156– 1173CrossRefGoogle Scholar
  122. Smith AK (1997) Stationary planetary waves in upper mesospheric winds. J Atmos Sci 54:2129– 2145CrossRefGoogle Scholar
  123. Smith AK (2003) The origin of stationary planetary waves in the upper mesosphere. J Atmos Sci 60(24):3033–3041CrossRefGoogle Scholar
  124. Takahashi H, Wrasse CM, Pancheva D, Abdu MA, Batista IS, Lima LM, Batista PP, Clemesha BR, Shiokawa K (2006) Signatures of 3–6-day planetary waves in the equatorial mesosphere and ionosphere. Ann Geophys 24:3343–3350CrossRefGoogle Scholar
  125. Talaat ER, Lieberman RS (1999) Nonmigrating diurnal tides in mesospheric and lower thermospheric winds and temperatures. J Atmos Sci 56:4073–4087CrossRefGoogle Scholar
  126. Talaat ER, Yee J-H, Zhu X (2001) Observations of the 6.5-day wave in the mesosphere and lower thermosphere. J Geophys Res 106:20715–20723CrossRefGoogle Scholar
  127. Tsunoda R, Yamamoto M, Igarashi K, Hocke K, Fukao S (1998) Quasi-periodic radar echoes from midlatitude sporadic E and the role of the 5-day planetary wave. Geophys Res Lett 25:951CrossRefGoogle Scholar
  128. Vincent R, Kovalam AS, Fritts DD, Isler JR (1998) Long-term MF radar observations of solar tide in the low-latitude mesosphere: interannual variability and comparison with the GSWM. J Geophys Res 103(D8):8667–8684. http://doi:10.1029/98JD00482 CrossRefGoogle Scholar
  129. Williams CR, Avery SK (1996) Diurnal nonmigrating tidal oscillations forced by deep convective clouds. J Geophys Res 101:4079–4091CrossRefGoogle Scholar
  130. Wu DL, Hays PB, Skinner WR (1994) Observations of the 5-day wave in the mesosphere and lower thermosphere. Geophys Res Lett 21:2733–2736CrossRefGoogle Scholar
  131. Wu Q et al (2008a) Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 1. migrating tide. J Geophys Res 113:A05308. http://doi:10.1029/2007JA012542 CrossRefGoogle Scholar
  132. Wu Q et al (2008b) Global distribution and interannual variations of mesospheric and lower thermospheric neutral wind diurnal tide: 2. nonmigrating tide. J Geophys Res 113:A05309. http://doi:10.1029/2007JA012543 CrossRefGoogle Scholar
  133. Xiao C, Hu X, Tian J (2009) Global temperature stationary planetary waves extending from 20 to 120 km observed by TIMED/SABER. J Geophys Res 114:D17101. http://doi:10.1029/2008JD011349 CrossRefGoogle Scholar
  134. Xu J, Smith AK, Liu H-L, Yuan W, Wu Q, Jiang G, Mlynczak MG, Russell III JM, Franke SJ (2009) Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J Geophys Res 114:D13107. http://doi:10.1029/2007JD011298 CrossRefGoogle Scholar
  135. Yuan T, Schmidt H, She CY, Krueger DA, Reising S (2008) Seasonal variations of semidiurnal tidal perturbations in mesopause region temperature and zonal and meridional winds above Fort Collins, Colorado (41°N, 105°W). J Geophys Res 113:D20103. http://doi:10.1029/2007JD009687 CrossRefGoogle Scholar
  136. Zhang X, Forbes JM, Hagan ME, Russell III JM, Palo SE, Mertens CJ, Mlynczak MG (2006) Monthly tidal temperatures 20–120 km from TIMED/SABER. J Geophys Res 111:A10S08. http://doi:10.1029/2005JA011504 CrossRefGoogle Scholar
  137. Zuo X, Wan W (2008) Planetary wave oscillations in sporadic E layer occurrence at Wuhan. Earth Planets Space 60:647–652Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Geophysical InstituteBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations