Advertisement

A Case Study of Tidal and Planetary Wave Coupling in the Equatorial Atmosphere-Ionosphere System Over India: Preliminary Results

  • S. Gurubaran
  • R. Dhanya
  • S. Sathiskumar
  • P.T. Patil
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

The present study examines the role of planetary waves and tides observed at upper mesospheric heights (~90 km) in the day-to-day variabilities of the quiet time ionospheric current system as manifested in ground magnetic field records at the dip equatorial and low latitude stations during the three month period, February–April 2008, when an experimental campaign under CAWSES-India program was conducted. The MF radars at Tirunelveli (8.7°N, 77.8°E) and Kolhapur (16.8°N, 74.2°E) provided the wind observations. The study reveals simultaneous presence of 5- to 6-day and 12- to 16-day oscillations in the radar wind fields and the strength of the equatorial electrojet (EEJ) derived from the geomagnetic field records from Tirunelveli and Alibag. Tidal winds and the amplitude of diurnal variation in the EEJ strength show a reasonably good correlation when 5-day averaged data sets are used. Though limited data were used, the present work will motivate further studies on the atmosphere – ionosphere coupling at low latitudes with extended data sets.

Keywords

Zonal Wind Meridional Wind Planetary Wave Equatorial Electrojet Sudden Stratospheric Warming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdu MA, Ramkumar TK, Batista IS, Brum CGM, Takahashi H, Reinisch BW, Sobral JHA (2006) Planetary wave signatures in the equatorial atmosphere-ionosphere system, and mesosphere-E-F-region coupling. J Atmos Solar-Terr Phys 68:509–522CrossRefGoogle Scholar
  2. Altadill D, Apostolov EM (1998) Vertical displacement of the 2-day wave in the midlatitude ionospheric F region. J Geophys Res 103:29199–29206CrossRefGoogle Scholar
  3. Anandarao BG, Raghavarao R (1979) Effects of vertical shears in the zonal winds on the electrojet. Space Res 19:283–286Google Scholar
  4. Anderson DN, Anghel A, Yumoto K, Ishituka M, Kudeki E (2002) Estimating daytime, vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys Res 29. doi:10.1029/2001GL014562Google Scholar
  5. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  6. Briggs BH (1984a) The variability of ionospheric dynamo currents. J Atmos Solar-Terr Phys 46:419–424CrossRefGoogle Scholar
  7. Briggs BH (1984b) The analysis of spaced sensor records by correlation techniques. Handb MAP 13:166–186Google Scholar
  8. Chen PR (1992) Two-day oscillations of the equatorial ionization anomaly. J Geophys Res 97:6343–6357CrossRefGoogle Scholar
  9. England SL, Immel TJ, Huba JD (2008) Modeling the longitudinal variation in the post-sunset far-ultraviolet OI airglow using the SAMI2 model. J Geophys Res 113:A01309. doi:10.1029/2007JA012536CrossRefGoogle Scholar
  10. Forbes JM (1995) Tidal and planetary waves. In: The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical monograph series, vol 87. American Geophysical Union, Washington DC, USA, vol. 97:pp 67–88Google Scholar
  11. Forbes JM (1996) Planetary waves in the thermosphere-ionosphere system. J Geomag Geoelectr 48:91–98Google Scholar
  12. Forbes JM, Guffe R, Zhang X, Fritts D, Riggin D, Manson A, Meek C, Vincent RA (1997) Quasi-2-day oscillation of the ionosphere during summer 1992. J Geophys Res 102:7301–7305CrossRefGoogle Scholar
  13. Forbes JM, Levoroni S (1992) Quasi-16-day oscillation in the ionosphere. Geophys Res Lett 19:981–984CrossRefGoogle Scholar
  14. Gurubaran S, Rajaram R (2000) Signatures of equatorial electrojet in the mesospheric partial reflection drifts over magnetic equator. Geophys Res Lett 27:943–946CrossRefGoogle Scholar
  15. Gurubaran S, Ramkumar TK, Sridharan S, Rajaram R (2001) Signatures of quasi-2-day planetary waves in the equatorial electrojet: results from simultaneous observations of mesospheric winds and geomagnetic field variations at low latitudes. J Atmos Solar-Terr Phys 63:813–821CrossRefGoogle Scholar
  16. Kane RP (1973) A critical appraisal of the method of estimating equatorial electrojet strength. Proc Indian Acad Sci 78(A):149–158Google Scholar
  17. Kikuchi T, Lühr H, Kitamura T, Saka O, Schlegel K (1996) Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J Geophys Res 101:17161–17173CrossRefGoogle Scholar
  18. Kohsiek A, Glassmeier KH, Hirooka T (1995) Periods of planetary waves in geomagnetic variations. Ann Geophys 13:168–176CrossRefGoogle Scholar
  19. Lei J, Thayer JP, Forbes JM, Sutton EK, Nerem RS (2008) Rotating solar coronal holes and periodic modulation of the upper atmosphere. Geophys Res Lett 35:L10109. doi:10.1029/2008GL033875CrossRefGoogle Scholar
  20. Luo Y, Manson AH, Meek CE, Meyer CK, Burrage MD, Fritts DC, Hall CM, Hocking WK, MacDougall J, Riggin DM, Vincent RA (2002) The 16-day planetary waves: multi-MF radar observations from the arctic to equator and comparisons with HRDI measurements and the GSWM modeling results. Ann Geophys 20:691–709CrossRefGoogle Scholar
  21. Mikhailov AV 1983, Mechanism of in phase variations of electron concentration between E and F2 ionospheric layers (in Russian). Geomagn Aeron 23:557–561Google Scholar
  22. Nawroozi AA (1967) Table for fisher’s test of significance in harmonic analysis. Geophys J R Astr Soc 12:517–520Google Scholar
  23. Nayar SRP (2006) Periodicities in solar activity and their signature in the terrestrial environment. In: Gopalswamy N, Bhattacharyya A (eds) Solar influence on the heliosphere and earth’s environment: recent progress and prospects. Quest Publications. pp 170–177Google Scholar
  24. Pancheva DV, Mukhtarov PJ, Mitchell NJ, Fritts DC, Riggin DM, Takahashi H, Batista PP, Clemesha BR, Gurubaran S, Ramkumar G (2008). Planetary wave coupling (5-6-day waves) in the low latitude atmosphere-ionosphere system. J Atmos Solar-Terr Phys 70:101–122CrossRefGoogle Scholar
  25. Pancheva DV, Mukhtarov PJ, Shepherd MG, Mitchell NJ, Fritts DC, Riggin DM, Franke SJ, Batista PP, Abdu MA, Batista IS, Clemesha BR, Kikuchi T (2006) Two-day wave coupling of the low-latitude atmosphere-ionosphere system. J Geophys Res 111:A07313. doi:10.1029/2005JA011562CrossRefGoogle Scholar
  26. Parish HF, Forbes JM, Kamalabadi F (1994) Planetary wave and solar emission signatures in the equatorial electrojet. J Geophys Res 99:355–368CrossRefGoogle Scholar
  27. Phillips A, Briggs BH (1991) The day to day variability of upper atmosphere tidal winds and dynamo currents. J Atmos Terr Phys 53:39–47CrossRefGoogle Scholar
  28. Rajaram R, Gurubaran S (1998) Seasonal variabilities of low latitude mesospheric winds. Ann Geophys 16:197–204CrossRefGoogle Scholar
  29. Ramkumar TK, Bhavanikumar Y, Narayana Rao D, Gurubaran S, Narendra Bab A, Ghosh AK, Rajaram R (2006) Observational evidences on the influence of tropical lower atmospheric ~20 day oscillation on the ionospheric equatorial electrojet. J Atmos Solar-Terr Phys 68:523–538CrossRefGoogle Scholar
  30. Ramkumar TK, Gurubaran S, Rajaram R (2009) Mesospheric planetary wave signatures in the equatorial electrojet. J Geophys Res 114:A03309. doi:10.1029/2007JA012935CrossRefGoogle Scholar
  31. Richmond AD (1995) The ionospheric wind dynamo: effects of its coupling with different atmospheric regions. In: The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical monograph series, Washington DC, USA, vol 87. pp 49–65Google Scholar
  32. Riggin DM, Liu H, Lieberman RS, Roble RG, Russell JM III, Mertens CJ, Mlynczak MG, Pancheva D, Franke SJ, Murayama Y, Manson AH, Meek CE, Vincent RA (2006) J Atmos Solar-Terr Phys 68:323–339Google Scholar
  33. Sridharan S, Gurubaran S, Rajaram R (2002) Structural changes in the tidal components in mesospheric winds as observed by the MF radar during afternoon counter electrojet events. J Atmos Solar-Terr Phys 64:1455–1463CrossRefGoogle Scholar
  34. Sridharan S, Gurubaran S, Rajaram R (2003) QBO influences on the variability of planetary waves in the equatorial mesopause region. Earth Planets Space 55:687–696Google Scholar
  35. Sridharan S, Sathishkumar S, Gurubaran S (2009) Variabilities of mesospheric tides and equatorial electrojet strength during major stratospheric warming events. Ann Geophys 27:4125–4130CrossRefGoogle Scholar
  36. Takahashi H, Wrasse CM, Pancheva D, Abdu MA, Batista IS, Lima LM, Batista PP, Clemesha BR, Shiokawa K (2006) Signatures of 3-6-day planetary waves in the equatorial mesosphere and ionosphere. Ann Geophys 24:3343–3350CrossRefGoogle Scholar
  37. Vincent RA (1993) Long period motions in the equatorial mesosphere. J Atmos Solar-Terr Phys 55:1067–1080CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. Gurubaran
    • 1
  • R. Dhanya
    • 1
  • S. Sathiskumar
    • 1
  • P.T. Patil
    • 2
  1. 1.Equatorial Geophysical Research LaboratoryIndian Institute of GeomagnetismTirunelveliIndia
  2. 2.MF Radar ObservatoryIndian Institute of GeomagnetismKolhapurIndia

Personalised recommendations