Chemical–Dynamical Coupling in the Mesosphere and Lower Thermosphere

Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

A chemistry climate model is used to illustrate several ways in which dynamics and chemistry are coupled in the mesosphere and lower thermosphere (50–120 km in altitude). First the mean chemical state of the modeled atmosphere is presented, including the distribution of key radiatively-active species that determine heating and cooling rates. This is followed by a description of the major dynamical modes of variability resolved by the model, which span timescales from hours to seasons, and includes the mean meridional circulation, the upper atmospheric response to a sudden stratospheric warming, and upward propagating tidal modes. It is demonstrated that all these have significant effects on composition, either through advection, or by the temperature and pressure dependence of chemical reaction rates. For those constituents modified by dynamics that play a role in the energy budget, the potential for a feedback on the dynamics exists.

Keywords

Zonal Wind Vertical Wind Meridional Circulation Lower Thermosphere Stratospheric Warming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the author and do not necessarily reflect the views of the National Science Foundation. Support for this research was also provided by the National Aeronautics and Space Administration, grants NNX08AL61G and NNX08AX28G. The author would like to thank Anne Smith for providing insightful comments on this manuscript.

References

  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, New York, NYGoogle Scholar
  2. Banks PM, Kockarts G (1973) Aeronomy, part B. Elsevier, New York, NY, 355 ppGoogle Scholar
  3. Chandra S, Jackman CH, Fleming EL, Russell JM (1997) The seasonal and long term changes in mesospheric water vapor. Geophys Res Lett 24:639–642. doi:10.1029/97GL00546CrossRefGoogle Scholar
  4. Clerbaux C, Coheur P-F, Hurtmans D, Barret B, Carleer M, Colin R, Semeniuk K, McConnell JC, Boone C, Bernath P (2005) Carbon monoxide distribution from the ACE-FTS solar occultation measurements. Geophys Res Lett 32:L16S01. doi:10.1029/2005GL022394CrossRefGoogle Scholar
  5. Dunkerton T, Hsu C-PF, McIntyre ME (1981) Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J Atmos Sci 38:819–843CrossRefGoogle Scholar
  6. Fomichev VI, Fu C, de Grandpré J, Beagley SR, Ogibalov VP, McConnell JC (2004) Model thermal response to minor radiative energy sources and sinks in the middle atmosphere. J Geophys Res 109:D19107. doi:10.1029/2004JD004892CrossRefGoogle Scholar
  7. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi:10.1029/2006JD007485CrossRefGoogle Scholar
  8. Jin JJ et al (2009) Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS. Atmos Chem Phys 9:3233–3252CrossRefGoogle Scholar
  9. Lean J (2000) Evolution of the Sun’s spectral irradiance since the maunder minimum. Geophys Res Lett 27(16):2425–2428. doi:10.1029/2000GL000043CrossRefGoogle Scholar
  10. Liu HL, Roble RG (2002) A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3. J Geophys Res 107(D23):4695. doi:10.1029/2001JD001533.CrossRefGoogle Scholar
  11. López-Puertas M, López-Valverde MA, Garcia RR, Roble RG (2000) A review of CO2 and CO abundances in the middle atmosphere. In: Siskind DE, Eckermann SD, Summers ME (eds) Atmospheric science across the stratopause. Geophysical monograph series, vol 123. AGU, Washington, DC, pp 83–100Google Scholar
  12. Lossow S, Urban J, Schmidt H, Marsh DR, Gumbel J, Eriksson P, Murtagh D (2009) Wintertime water vapor in the polar upper mesosphere and lower thermosphere: first satellite observations by Odin submillimeter radiometer. J Geophys Res 114:D10304. doi:10.1029/2008JD011462CrossRefGoogle Scholar
  13. Manney GL et al (2008) The evolution of the stratopause during the 2006 major warming: satellite data and assimilated meteorological analyses. J Geophys Res 113:D11115. doi:10.1029/2007JD009097CrossRefGoogle Scholar
  14. Marsh DR, Garcia RR, Kinnison DE, Boville BA, Sassi F, Solomon SC, Matthes K (2007) Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J Geophys Res 112:D23306. doi:10.1029/2006JD008306CrossRefGoogle Scholar
  15. Marsh DR, Roble RG (2002) TIME-GCM simulations of lower-thermospheric nitric oxide seen by the halogen occultation experiment. J Atmos Solar-Terr Phys 64(8–11):889–895. doi:10.1016/S1364-6826(02)000445CrossRefGoogle Scholar
  16. Marsh DR, Russell JM III (2000) A tidal explanation for the sunrise/sunset anomaly in HALOE low-latitude nitric oxide observations. Geophys Res Lett 27:3197–3200CrossRefGoogle Scholar
  17. Marsh DR, Skinner WR, Marshall AR, Hays PB, Ortland DA, Yee J-H (2002) High resolution Doppler imager observations of ozone in the mesosphere and lower thermosphere. J Geophys Res 107(D19):4390. doi:10.1029/2001JD001505CrossRefGoogle Scholar
  18. Marsh DR, Smith AK, Mlynczak MG, Russell JM III (2006) SABER observations of the OH Meinel airglow variability near the mesopause. J Geophys Res 111:A10S05. doi:10.1029/2005JA011451CrossRefGoogle Scholar
  19. Minschwaner K, Siskind DE (1993) A new calculation of nitric oxide photolysis in the stratosphere, mesosphere, and lower thermosphere. J Geophys Res 98(D11):20, 401–420, 412CrossRefGoogle Scholar
  20. Mlynczak MG, Solomon S (1993) A detailed evaluation of the heating efficiency in the middle atmosphere. J Geophys Res 98:10517–10541CrossRefGoogle Scholar
  21. Mlynczak M et al (2003) The natural thermostat of nitric oxide emission at 5.3 mm in the thermosphere observed during the solar storms of April 2002. Geophys Res Lett 30(21):2100. doi:10.1029/2003GL017693CrossRefGoogle Scholar
  22. Oberheide J, Forbes JM (2008) Thermospheric nitric oxide variability induced by nonmigrating tides. Geophys Res Lett 35:L16814. doi:10.1029/2008GL034825CrossRefGoogle Scholar
  23. Pancheva D, Mukhtarov P, Andonov B (2009) Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007). Ann Geophys 27:687–703CrossRefGoogle Scholar
  24. Pumphrey HC et al (2007) Validation of middle-atmosphere carbon monoxide retrievals from the microwave limb sounder on aura. J Geophys Res 112:D24S38. doi:10.1029/2007JD008723CrossRefGoogle Scholar
  25. Richter JH, Sassi F, Garcia RR (2010) Toward a physically based gravity wave source parameterization in a general circulation model. JAS. doi:10.1175/2009JAS3112.1Google Scholar
  26. Rienecker MM et al (2008) The GEOS-5 data assimilation system—documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA/TM-2008-104606, vol 27. Technical Report Series on global modeling and data assimilation. Goddard Space Flight Center, Greenbelt, Maryland, 118 ppGoogle Scholar
  27. Russell JM III et al (2009) Aeronomy of ice in the mesosphere (AIM): overview and early science results. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.08.01Google Scholar
  28. Sander SP et al (2006) Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation 15, JPL Publ. 06-2Google Scholar
  29. Shepherd GG, McLandress C, Solheim BH (1995) Tidal influence on O(1S) airglow emission rate distributions at the geo-graphic equator as observed by WINDII. Geophys Res Lett 22:275–278CrossRefGoogle Scholar
  30. Siskind DE, Bacmeister JT, Summers ME, Russell JM III (1997) Two-dimensional model calculations of nitric oxide transport in the middle atmosphere and comparison with halogen occultation experiment data. J Geophys Res 102(D3):3527–3545CrossRefGoogle Scholar
  31. Siskind DE, Eckermann SD, Coy L, McCormack JP, Randall CE (2007) On recent interannual variability of the arctic winter mesosphere: implications for tracer descent. Geophys Res Lett 34:L09806. doi:10.1029/2007GL029293CrossRefGoogle Scholar
  32. Siskind DE, Russell JM III (1996) Coupling between middle and upper atmospheric NO: constraints from HALOE observations. Geophys Res Lett 23(2):137–140CrossRefGoogle Scholar
  33. Smith AK, Lopez-Puertas M, Garcia-Comas M, Tukiainen S (2009) SABER observations of mesospheric ozone during NH late winter 2002–2009. Geophys Res Lett 36:L23804. doi:10.1029/2009GL040942CrossRefGoogle Scholar
  34. Smith AK, Marsh DR (2005) Processes that account for the ozone maximum at the mesopause. J Geophys Res 110:D23305. doi:10.1029/2005JD006298CrossRefGoogle Scholar
  35. Smith AK, Marsh DR, Russell JM III, Mlynczak MG, Martin-Torres FJ, Kyrölä E (2008) Satellite observations of high nighttime ozone at the equatorial mesopause. J Geophys Res 113:D17312. doi:10.1029/2008JD010066CrossRefGoogle Scholar
  36. Swinbank R, Ortland DA (2003) Compilation of wind data for the upper atmosphere research satellite (UARS) reference atmosphere project. J Geophys Res 108(D19):4615. doi:10.1029/2002JD003135CrossRefGoogle Scholar
  37. Wang Y-M, Lean JL, Sheeley NR Jr(2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522–538CrossRefGoogle Scholar
  38. Winick JR, Wintersteiner PP, Picard RH, Esplin D, Mlynczak MG, Russell JM III, Gordley LL (2009) OH layer characteristics during unusual boreal winters of 2004 and 2006. J Geophys Res 114:A02303. doi:10.1029/2008JA013688CrossRefGoogle Scholar
  39. Xu J, Liu H-L, Yuan W, Smith AK, Roble RG, Mertens CJ, Russell JM III, Mlynczak MG (2007) Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J Geophys Res 112:D09102. doi:10.1029/2006JD007711CrossRefGoogle Scholar
  40. Zhang SP, Shepherd GG (1999) The influence of the diurnal tide on the O(¹S) and OH emission rates observed by WINDII on UARS. Geophys Res Lett 26(4):529–532. doi:10.1029/1999GL900033CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA

Personalised recommendations