Skip to main content

Electromagnetic Images of the South and Central American Subduction Zones

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Current and fossil plate margins offer some of the most rewarding targets for geophysical studies. Particularly, the fluid/melt cycle in subduction zones continues to be of major interest for seismological as well as deep electromagnetic (EM), specifically magnetotelluric investigations. In this contribution we describe a number of experiments which have been conducted in several ocean-continent convergence zones around the world, with a focus on the Andes and Central America, respectively. Zones of potentially high electrical conductivity range from bending-related faulting near the outer rise, the subduction channel at the tip of the continental plate, the dehydration-hydration cycles in and above the downgoing plate, the assumed melting of the asthenospheric wedge to the rise of melts toward the volcanic arc and the magma chambers beneath the volcano edifices. Further targets include fault zones in the forearc, accommodating tensional stress, as well as hydrothermal and mineral deposits, to mention a few. The following chapters emphasize on a variety of structures along continental margins and show the potential of deep EM in this geodynamic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Hybrid cases are the so-called VLF (very low frequency) and RMT (radio magnetotelluric) methods which use the radiation from distant transmitters for communication with submarines and LF radio stations, respectively.

  2. 2.

    If the spatial structure of the field is known, an extension of the methods described above may be used to estimate conductivity of the Earth.

  3. 3.

    The impedance is defined here via the magnetic induction B as is common in MT, yielding an unit of m/s. By replacing induction B with the magnetic field H the expected unit of Ω is obtained.

  4. 4.

    Although the term vector is often used (also in this text), note that, for coupled anomalies the “vectors” can’t simply be added (Siemon 1997).

References

  • Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208. doi:10.1029/2008JB005910

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the altiplano-puna plateau of the central andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of an active continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP ’96)). J Geophys Res 108 doi:10.1029/2002JB001771

    Google Scholar 

  • Asch G, Schurr B, Bohm M, Yuan X, Haberland C, Heit B, Kind R, Woelbern I, Bataille K, Comte D, Pardo M, Viramonte J, Rietbrock A, Giese P (2006) Seismological studies of the central and southern andes. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 443–458

    Google Scholar 

  • Assumpcão M (1992) The regional intraplate stress field in South America. J Geophys Res 97:11889–11903

    Article  Google Scholar 

  • Asters RC, Borchers B, Thurber CH (2005) Parameter estimation and inverse problems. International Geophysics Series, 90. Elsevier, Amsterdam

    Google Scholar 

  • Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62:119–127

    Google Scholar 

  • Barboza G, Fernández JA, Barrientos J, Bottazi G (1997) Costa rica: petroleum geology of the Caribbean margin. Lead Edge 16:1787–1794

    Article  Google Scholar 

  • Baumont D, Paul A, Beck S, Zandt G (1999) Strong crustal heterogeneity in the Bolivian Altiplano as suggested by attenuation of Lg waves. J Geophys Res 104:20287–20305

    Article  Google Scholar 

  • Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, and Wigger P (2002) The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Article  Google Scholar 

  • Booker JR, Favetto A, Pomposiello MC (2004) Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature 429:399–403

    Article  Google Scholar 

  • Brasse H, Eydam D (2008) Electrical conductivity beneath the Bolivian Orocline and its relation to subduction processes at the South American continental margin. J Geophys Res 113:B07109. doi:10.1029/2007JB005142

    Article  Google Scholar 

  • Brasse H, Kapinos G, Li Y, Mütschard L, Eydam D (2009) Structural electrical anisotropy in the crust at the South-Central Chilean continental margin as inferred from geomagnetic transfer functions. Phys Earth Planet Inter. doi:10.1016/j.pepi.2008.10.017

    Google Scholar 

  • Brasse H, Lezaeta P, Rath V, Schwalenberg K, Soyer W, Haak V (2002) The Bolivian Altiplano conductivity anomaly. J Geophys Res 107. doi:10.1029/2001JB000391

    Google Scholar 

  • Brasse H, Soyer W (2001) A magnetotelluric study in the Southern Chilean Andes. Geophys Res Lett 28:3757–3760

    Article  Google Scholar 

  • Bruhn D, Siegfried R, Schilling F (2004) Electrical resistivity of dehydrating serpentinite. Eos Trans AGU 85(Fall Meet. Suppl):Abstract T41B-1176

    Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and the shape of the subducted Nazca Plate. J Geophys Res 97:17503–17529

    Article  Google Scholar 

  • Calder ES, Harris AJL, Peña P, Pilger E, Flynn LP, Fuentealba G, Moreno H (2004) Combined thermal and seismic analysis of the Villarrica volcano lava lake, Chile. Rev geol Chile 31:259–272

    Article  Google Scholar 

  • Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph Series, vol 138. AGU, Washington, DC, pp 153–179

    Google Scholar 

  • Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe Ofqui fault zone: a long-lived intra-arc fault system in southern Chile. Tectonophysics 259:55–66

    Article  Google Scholar 

  • Cembrano J, Lavenu A, Yañez G, Riquelme R, García M, González G, Hérail G (2007) Neotectonics. In: Moreno T, Gibbons W (eds) The geology of chile. Geological Society London, pp 231–261

    Google Scholar 

  • Chave AD, Constable SC, Edwards RN (1991) Electrical exploration methods for the seafloor. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2. Society of Exploration Geophysicists, Tulsa, pp 931–966

    Google Scholar 

  • Cifuentes I (1989) The 1960 Chilean earthquakes. J Geophys Res 94:665–680

    Article  Google Scholar 

  • Comte D, Dorbath L, Pardo M, Monfret T, Haessler H, Rivera L, Frogneux M, Glass B, Meneses C (1999) A double-layered seismic zone in Arica, northern Chile. Geophys Res Lett 26. doi:10.1029/1999GL900447

    Google Scholar 

  • David C (2007) Comportamiento actual del ante-arco y del arco del codo de Arica en la orogénesis de los Andes centrales. PhD thesis, Universidad de Chile, Santiago

    Google Scholar 

  • Davies JH (1999) The role of hydraulic fractures and intermediate-depth earthquakes in generating subduction-zone magmatism. Nature 398:142–145

    Article  Google Scholar 

  • DeMets C (2001) A new estimate for present-day Cocos-Caribbean plate motion: implications for slip along the central American Volcanic Arc. Geophys Res Lett 28:4043-4046

    Article  Google Scholar 

  • DeShon HR, Schwartz SY (2004) Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica. Geophys Res Lett 31. doi:10.1029/2004GL021179

    Google Scholar 

  • Diaz D (2010) Magnetotelluric investigation of the volcanic arc in the Central Andes with special emphasis on Lascar volcano. PhD thesis, Free University of Berlin

    Google Scholar 

  • Dorbath C, Granet M (1996) Local earthquake tomography of the Altiplano and the Eastern Cordillera of northern Bolivia. Tectonophysics 259:117–136

    Article  Google Scholar 

  • Dorbath C, Masson F (2000) Composition of the crust and upper-mantle in the central Andes (19°30S) inferred from P wave velocity and Poisson’s ratio. Tectonophysics 327:213–223

    Article  Google Scholar 

  • Egbert GD (1997) Robust multiple-station magnetotelluric data processing. Geophys J Int 130:475–496

    Article  Google Scholar 

  • Elger K, Oncken O, Glodny J (2005) Plateaustyle accumulation of deformation: Southern Altiplano. Tectonics 24. doi:10.1029/2004TC001675

    Google Scholar 

  • Elming SA, Rasmussen T (1997) Results of magnetotelluric and gravimetric measurements in western Nicaragua, central America. Geophys J Int 128:647–658

    Article  Google Scholar 

  • Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A. Academic Press, Burlington, MA, pp 665–690

    Google Scholar 

  • Evans RL, Chave AD, Booker JR (2002) On the importance of offshore data for magnetotelluric studies of ocean-continent subduction systems. Geophys Res Lett 29. doi: 10.1029/2001GL013960

    Google Scholar 

  • Eydam D (2008) Magnetotellurisches Abbild von Fluid- und Schmelzprozessen in Kruste und Mantel der zentralen Anden. Diploma thesis, Fachrichtung Geophysik, FU Berlin

    Google Scholar 

  • Folguera A, Zapata T, Ramos VA (2006) Late Cenozoic extension and the evolution of the Neuquén Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°– 39°S lat). Geol Soc Am Spec Paper 407. doi:10.1130/ 2006.2407(12)

    Google Scholar 

  • Friedel S (1997) Elektromagnetische Tiefensondierungen in Nordchile unter Berücksichtigung der Sq-Variationen und des EEJ. Diploma thesis, Fachrichtung Geophysik, FU Berlin

    Google Scholar 

  • Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph vol 138. American Geophysical Union, Washington, DC pp 107–133

    Google Scholar 

  • Gaillard F (2004) Laboratory measurements of electrical conductivity of hydrous and dry silicic melts under pressure. Earth Planet Sci Lett 218:215–228

    Article  Google Scholar 

  • Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaille B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322. doi:10.1126/science.1164446

    Google Scholar 

  • Gazel E, Denyer P, Baumgartner PO (2006) Magmatic and geotectonic significance of Santa Elena Peninsula, Costa Rica Geol Acta 4:193–202

    Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 401–428

    Google Scholar 

  • Gonzáles-Ferrán O (1994) Volcanes de Chile. Instituto Geográfico Militar, Santiago de Chile, 640pp

    Google Scholar 

  • Groß K, Micksch U, TIPTEQ Research Group, Seismics Team (2007) The reflection seismic survey of project TIPTEQ – the inventory of the Chilean subduction zone at 38.2°S. Geophys J Int. doi:10.1111/j.1365-246X.2007.03680.x

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Haberland C, Rietbrock A, Lange D, Bataille K, Hofmann S (2006) Interaction between forearc and oceanic plate at the south-central Chilean margin as seen in local seismic data. Geophys Res Lett 33. doi:10.1029/2006GL028189

    Google Scholar 

  • Haberland C, Rietbrock A, Schurr B, Brasse H (2003) Coincident anomalies of seismic attenuation and electrical resistivity beneath the southern Bolivian Altiplano plateau. Geophys Res Lett 30. doi:10.1029/2003GL017492

    Google Scholar 

  • Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory, 2, Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108. 10.1029/2001JB001129

    Google Scholar 

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25:599–646

    Article  Google Scholar 

  • Hauff F, Hoernle K, van den Bogaard P, Alvarado G, Garbe-Schönberg D (2000) Age and geochemistry of basaltic complexes in western Costa Rica: contributions to the geotectonic evolution of Central America. Geochem Geophys Geosyst 1. doi:10.1029/1999GC000020

    Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bennie SL (2010) Three-dimensional electrical resistivity image of magma beneath an active continental rift, Taupo Volcanic Zone, New Zealand. Geophys Res Lett 37:L10301. doi:10.1029/2010GL043110

    Article  Google Scholar 

  • Heise W, Pous J (2001) Effects of anisotropy on the two-dimensional inversion procedure. Geophys J Int 147:610–621

    Article  Google Scholar 

  • Heit BS (2005) Teleseismic tomographic images of the Central Andes at 21°S and 25.5°S: an inside look at the Altiplano and Puna plateaus. PhD thesis, FU Berlin

    Google Scholar 

  • Hérail G, Rochat P, Baby P, Aranibar O, Lavenu A, Masclez G (1997) El Altiplano Norte de Bolivia, evolución geológica terciaria, El Altiplano: ciencia y conciencia en los Andes, Actas 2. In: Charrier R et al. (eds) Simposio Internacional Estudios Altiplánicos, Arica 1993. Universidad de Chile, Santiago, pp 33–44

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hill GJ, Caldwell TG, Heise W, Chertkoff DG, Bibby HM, Burgess MK, Cull JP, Cas RAF (2009) Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data. Nat. Geosci. doi:10.1038/NGEO661

    Google Scholar 

  • Hoernle K, Hauff F (2000) Oceanic igneous provinces. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources, hazards, vol 1. Taylor & Francis, London, pp 523–548

    Google Scholar 

  • Husen S, Quintero R, Kissling E, Hacker BR (2003) Subduction zone structure and magmatic processes beneath Costa Rica as constrained by local earthquake tomography and petrologic modeling. Geophys J Int 155:11–32

    Article  Google Scholar 

  • James DE (1971) Andean crustal and upper mantle structure. J Geophys Res 76:3246–3271

    Article  Google Scholar 

  • James DE, Sacks JW (1999) Cenozoic formation of the central Andes: a geophysical perspective. In: Skinner B (ed) Geology and ore deposits of the central Andes. Society of Economic Geologists Special Publication 7, Littleton, CO, pp 1–25

    Google Scholar 

  • Jiracek G, Curtis J, Ramirez J, Martinez M, Romo J (1989) Two-dimensional magnetotelluric inversion of the EMSLAB lincoln line. J Geophys Res 94:14145–14151

    Article  Google Scholar 

  • Jödicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rüpke L (2006) Fluid release from the subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111. doi:10.1029/2005JB003739

    Google Scholar 

  • Kapinos G (2011) Amphibious magnetotellurics at the South-Central Chilean continental margin. PhD thesis, Free University of Berlin

    Google Scholar 

  • Kay SM, Mpodozis C (2001) Central Andean Ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today 11:4–9

    Article  Google Scholar 

  • Kirby SH, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout GE et al. (eds) Subduction: top to bottom. Geophysical Monograph Series, vol 96. AGU, Washington, DC, pp 195–214

    Google Scholar 

  • Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the central and Southern Andes and constraints on the viscosity of the Earth’s Upper Mantle. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 65–89

    Google Scholar 

  • Krawczyk CM, Mechie J, Tašárová Z, Lüth S, Stiller M, Brasse H, Echtler H, Bataille K, Wigger P, Araneda M (2006) Geophysical signatures and active tectonics at the South-Central Chilean Margin. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 171–192

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw:9.5) Chilean earthquake: a structural interpretation. J Volc Geotherm Res 138:127–138

    Article  Google Scholar 

  • Lezaeta P (2001) Distortion analysis and 3-D modeling of magnetotelluric data in the Southern Central Andes. PhD thesis, FU Berlin

    Google Scholar 

  • Lezaeta P, Brasse H (2001) Electrical conductivity beneath the volcanoes of the NW Argentinian Puna. Geophys Res Lett 28:4651–4654

    Article  Google Scholar 

  • Lezaeta P, Muñoz M, Brasse H (2000) Magnetotelluric image of the crust and upper mantle in the backarc of the NW Argentinean Andes. Geophys J Int 142:841–854

    Article  Google Scholar 

  • Li Y (2002) A finite element algorithm for electromagnetic induction in two-dimensional anisotropic conductivity structures. Geophys J Int 148:389–401

    Article  Google Scholar 

  • López-Escobar L, Cembrano J, Moreno H (1995) Geochemistry and tectonics of the Chilean Southern Andes basaltic Quaternary volcanism (37–46°S). Rev Geol Chile 22:219–234

    Google Scholar 

  • Lüth S, Wigger P (2003) A crustal model along 39°S from a seismic refraction profile – ISSA 2000. Rev Geol Chile 30:83–101

    Google Scholar 

  • MacKenzie L, Abers GA, Fischer KM, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9:Q08S09. doi:10.1029/2008GC001991

    Article  Google Scholar 

  • Mackie RL, Smith JT, Madden TR (1994) Three-dimensional modeling using finite difference equations: the magnetotelluric example. Radio Sci 29:923–935

    Article  Google Scholar 

  • Mann P, Rogers RD, Gahagan L (2007) Overview of plate tectonic history and its unresolved tectonic problems. In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources, hazards, vol 1. Taylor & Francis, London, pp 201–238

    Google Scholar 

  • McNeice GW, Jones AG (2001) Multi-site, multi-frequency tensor decomposition of magnetotelluric data. Geophysics 66:158–173

    Article  Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler H (2006) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35–39°S). Geol Soc Am Spec Paper 407. doi:10.1130/2006.2407(04)

    Google Scholar 

  • Mibe K, Fujii T, Yasuda A (1999) Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge. Nature 401:259–262

    Article  Google Scholar 

  • Montahei M (2011) Investigation of electrically anisotropic structures employing magnetotelluric data. PhD thesis, University of Tehran

    Google Scholar 

  • Müller A, Haak V (2004) 3-D modeling of the deep electrical conductivity of Merapi volcano (Central Java): integrating magnetotellurics, induction vectors and the effects of steep topography. J Volc Geotherm Res 138:205–222

    Article  Google Scholar 

  • Muñoz N, Charrier R (1996) Uplift of the western border of the Altiplano on a west-vergent thrust system, Northern Chile. J South Am Earth Sci 9:171–181

    Article  Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27:177–203

    Article  Google Scholar 

  • Myers SC, Beck S, Zandt G, Wallace T (1998) Lithospheric-scale structure across the Bolivian Andes from tomographic images of velocity and attenuation for P and S waves. J Geophys Res 103:21233–21252

    Article  Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation (principle and proposal). J Volcan Geotherm Res 2:1–16

    Article  Google Scholar 

  • Nesbitt BE (1993) Electrical resistivities of crustal fluids. J Geophys Res 98:4301–4310

    Article  Google Scholar 

  • Parada MA, López-Escobar L, Oliveros V, Fuentes F, Morata D, Calderón M, Aguirre L, Féraud G, Espinoza F, Moreno H, Figueroa O, Muñoz J, Troncoso Vásquez R, Stern CR (2007) Andean magmatism. In: Moreno T, Gibbons W (eds) The geology of Chile. Geological Society, London, pp 115–146

    Google Scholar 

  • Pek J, Verner T (1997) Finite difference modelling of magnetotelluric fields in 2-D anisotropic media. Geophys J Int 128:505–521

    Article  Google Scholar 

  • Patro PK, Egbert GD (2008) Regional conductivity structure of Cascadia: preliminary results from 3D inversion of USArray transportable array magnetotelluric data. Geophys Res Lett 35:L20311. doi:10.1029/2008GL035326

    Article  Google Scholar 

  • Peacock SM, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica-Nicaragua subduction zone. Phys Earth Planet Int 149:187–200

    Article  Google Scholar 

  • Pizarro D (1993) Los pozos profundos perforados en Costa Rica: aspectos litológicos y bioestratigráficos. Rev Geol Am Central 15:81–85

    Google Scholar 

  • Protti M, Guendel F, McNally K (1995) Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. Geol Soc Am Spec Paper 295:309–326

    Google Scholar 

  • Ramos VA, Kay SM (2006) Overview of the tectonic evolution of the southern Central Andes of Mendoza and Neuquén (35°–39°S latitude). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S). Geological Society of America Special Paper, vol 407. doi:10.1130/2006.2407(01)

    Google Scholar 

  • Ranero CR, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Reuther CD, Moser E (2007) Orientation and nature of active crustal stresses determined by electromagnetic measurements in the Patagonian segment of the South America Plate. Int J Earth Sci (Geol. Rundschau). doi:10.1007/s00531-007-0273-0

    Google Scholar 

  • Rietbrock A, Haberland C, Bataille K, Dahm T, Oncken O (2005) Studying the seismogenic coupling zone with a passive seismic array. EOS Trans AGU 86:293

    Article  Google Scholar 

  • Ritz M, Bondoux F, Hérail G, Sempere T (1991) A magnetotelluric survey in the northern Bolivian Altiplano. Geophys Res Lett 18:475–478

    Google Scholar 

  • Roberts JJ, Tyburczy JA (1999) Partial-melt electrical conductivity: Influence of melt composition. J Geophys Res 104:7055–7065

    Article  Google Scholar 

  • Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversions. Geophysics 66:174–187

    Article  Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude. Tectonics 25. doi:10.1029/2005TC001943

    Google Scholar 

  • Rüpke LH, Morgan JP, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30:1035–1038

    Article  Google Scholar 

  • Rychert CA, Fischer KM, Abers GA, Plank T, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Strong along-arc variations in attenuation in the mantle wedge beneath Costa Rica and Nicaragua. Geochem Geophys Geosyst 9:Q10S10. doi:10.1029/2008GC002040

    Article  Google Scholar 

  • Sallarès V, Dañobeitia JJ, Flueh ER (2001) Lithospheric structure of the Costa Rican Isthmus: effects of subduction zone magmatism on an oceanic plateau. J Geophys Res 106:621–643

    Article  Google Scholar 

  • Scambelluri M, Philippot P (2001) Deep fluids in subduction zones. Lithos 55:213–227

    Article  Google Scholar 

  • Scherwath M, Flueh E, Grevemeyer I, Tilmann F, Contreras-Reyes E, Weinrebe W (2006) Investigating subduction zone processes in Chile. EOS Trans AGU 87:265

    Article  Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development fo the north Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer, Berlin, pp 121–140

    Google Scholar 

  • Scheuber E, Mertmann D, Ege H, Silva-González P, Heubeck C, Reutter K-J, Jacobshagen V (2006) Exhumation and basin development related to formation of the Central Andean Plateau, 21°S. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 459–474

    Google Scholar 

  • Schilling FR, Trumbull RB, Brasse H, Haberland C, Asch G, Bruhn D, Mai K, Haak V, Giese P, Muñoz M, Ramelow J, Rietbrock A, Ricaldi E, Vietor T (2006) Partial melting in the Central Andean crust: a review of geophysical, petrophysical, and petrologic evidence. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 459–474

    Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Schmucker U (1970) Anomalies of geomagnetic variations in the Southwestern United States. Bull Scripps Institution La Jolla, University of California Press, Los Angeles

    Google Scholar 

  • Schmucker U, Forbush SE, Hartmann O, Giesecke AA, Casaverde M, Castillo J, Salgueiro R, del Pozo S (1966) Electrical conductivity anomaly under the Andes. Carnegie Inst Wash Yearb 65:11–28

    Google Scholar 

  • Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland C (2003) Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215:105–119

    Article  Google Scholar 

  • Schwalenberg K, Haak V, Rath V (2002) The application of sensitivity studies on a two-dimensional resistivity model from the Central Andes. Geophys J Int 150:673–686

    Article  Google Scholar 

  • Schwarz G, Krüger D (1997) Resistivity cross section through the southern central Andes as inferred from magnetotelluric and geomagnetic deep soundings. J Geophys Res 102:11957–11978

    Article  Google Scholar 

  • Sempere T, Hérail G, Oller J, Bonhomme MG (1990) Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Geology 18:946–949

    Article  Google Scholar 

  • Shaw H (1980) Fracture mechanisms of magma transport from the mantle to the surface. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Sick C, Yoon M-K, Rauch K, Buske S, Lüth S, Araneda M, Bataille K, Chong G, Giese P, Krawczyk C, Mechie J, Meyer H, Oncken O, Reichert C, Schmitz M, Shapiro S, Stiller M, Wigger P (2006) Seismic images of accretive and erosive subduction zones from the Chilean margin. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 147–169

    Google Scholar 

  • Siemon B (1997) An interpretation technique for superimposed induction anomalies. Geophys J Int 130:73–88

    Article  Google Scholar 

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smith JT (1995) Understanding telluric distortion matrices. Geophys J Int 122:219–226

    Article  Google Scholar 

  • Smith JT (1997) Estimating galvanic-distortion magnetic fields in magnetotellurics. Geophys J Int 130:65–72

    Article  Google Scholar 

  • Soyer W (2002) Analysis of geomagnetic variations in the Central and Southern Andes. PhD thesis, FU Berlin

    Google Scholar 

  • Soyer W, Brasse H (2001) Investigation of anomalous magnetic field variations in the central Andes of N Chile and SW Bolivia. Geophys Res Lett 28:3023–3026

    Article  Google Scholar 

  • Soyer W, Unsworth M (2006) Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone: implications for the distribution of fluids. Geology 34. doi:10.1130/G21951.1

    Google Scholar 

  • Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Article  Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31:161–206

    Article  Google Scholar 

  • Sylvester AG (1988) Strike-slip faults. Geol Soc Am Bull 100:1666–1703

    Article  Google Scholar 

  • Syracuse EM, Abers GA, Fischer K, MacKenzie L, Rychert C, Protti JM, González, V, Strauch W (2008) Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle. Geochem Geophys Geosyst 9:Q07S08. doi:10.1029/2008GC001963

    Article  Google Scholar 

  • Tassara A, Götze HJ, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111. doi:10.1029/2005JB003976

    Google Scholar 

  • Tatsumi Y (2003) Some constraints on arc magma genesis. In: Eiler J (ed) Inside the subduction factory. Geophysical Monograph Series, vol 138. AGU, Washington, DC, pp 277–292

    Google Scholar 

  • Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts, mineral physics & crystallography. In: Ahrens TJ Handbook of physical constants, American Geophysical Union, Washington, DC, pp 185–208

    Google Scholar 

  • Vanyan LL, Berdichevsky MN, Pushkarev PYu, Romanyuk TV (2002) A geoelectric model of the Cascadia subduction zone. Izvestiya Phys Solid Earth 38:816–845

    Google Scholar 

  • Varentsov IvM, Golubev NG, Gordienko VV, Sokolova EYu (1996) Study of deep geoelectrical structure along EMSLAB Lincoln-Line. Izvestiya Phys Solid Earth 32:375–393

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the peru-Chile trench off Central Chile. In: Oncken O et al. (eds) The Andes: active subduction orogeny, frontiers in earth sciences. Springer, Berlin, pp 193–216

    Google Scholar 

  • von Huene R, Weinrebe W, Heeren F (1999) Subduction erosion along the North Chile margin. Geodynamics 27:345–358

    Article  Google Scholar 

  • Walther CHE, Flueh ER, Ranero CR, von Huene R, Strauch W (2000) Crustal structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and a shallow mantle sliver. Geophys J Int 141:759–777

    Article  Google Scholar 

  • Wannamaker PE (1999) Affordable Magnetotellurics: interpretation in Natural Environments. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Soc. Expl. Geophys., Tulsa, pp 349–374

    Chapter  Google Scholar 

  • Wannamaker PE, Booker JR, Jones AG, Chave AD, Filloux JH, Waff HS, Law LK (1989) Resistivity cross-section through the Juan de Fuca subduction system and its tectonic implications. J Geophys Res 94:14127–14144

    Article  Google Scholar 

  • Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough. New Zealand. Nature 460. doi:10.1038/nature08204

    Google Scholar 

  • Weidelt P (1999) 3-D Conductivity models: implications of electrical anisotropy. In: Oristaglio M, Spies B (eds) Three-dimensional electromagnetics. Society of Exploration Geophysicists, Tulsa, pp 119–137

    Chapter  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

  • Whitman D, Isacks BL, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau: seismic Q, magmatism, flexure, topography and tectonics. Tectonophysics 259:29–40

    Article  Google Scholar 

  • Wiese H (1962) Geomagnetische Tiefentellurik Teil II: Die Streichrichtung der Untergrundstrukturen des elektrischen Widerstandes, erschlossen aus geomagnetischen Variationen. Pageoph 52:83–103

    Article  Google Scholar 

  • Wigger P, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn W-D, Martínez E, Ricaldi E, Röwer P, Viramonte J (1994) Variation of the crustal structure of the southern Central Andes deduced from seismic refraction investigations. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer, Berlin, pp 23–48

    Google Scholar 

  • Wörner G, Hammerschmidt K, Henjes-Kunst F, Lezaun J, Wilke H (2000) Geochronology (40Ar-39Ar-, K-Ar-, and He-exposure-ages) of Cenozoic magmatic rocks from Northern Chile (18°-22°S): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27:205–240

    Google Scholar 

  • Wörner G, Uhlig D, Kohler I, Seyfried H (2002) Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time. Tectonophysics 345:183–198

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wölbern I (2006) Deep seismic images of the southern Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39°S lat), Geological Society of American, Special paper. doi:10.1130/2006.2407(03)

    Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

  • Zhdanov MS (2009) Geophysical Electromagnetic theory and methods. Methods in geochemistry and geophysics, 43. Elsevier, 868pp

    Google Scholar 

Download references

Acknowledgements

The author wants to thank the partner institutions in Chile (Universidad Católica del Norte, Universidad de Concepción), Bolivia (Universidad Mayor de San Andrés), Argentina (Universidad Nacional de Salta, Universidad de Buenos Aires), Costa Rica (Instituto Costarricense de Electricidad) and Nicaragua (Instituto Nicaragüense de Estudios Territoriales); without their logistical support this work would not have been possible. The help of many members and students from these institutions and the Free University of Berlin is also gratefully acknowledged. Funding was provided by German Science Foundation (DFG) through numerous grants to the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Brasse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brasse, H. (2011). Electromagnetic Images of the South and Central American Subduction Zones. In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_4

Download citation

Publish with us

Policies and ethics