Magnetic Mapping of Weakly Contaminated Areas

  • Aleš Kapička
  • Eduard Petrovský
  • Neli Jordanova
  • Vilém Podrázský
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 1)


Soil magnetometry has proved to be a helpful auxiliary method for outlining potentially contaminated areas. Magnetic susceptibility of topsoils may reflect concentration of atmospherically deposited anthropogenic iron oxides, which often coexist with harmful substances, such as heavy metals. Magnetic mapping of topsoils yields unambiguous results in areas with high concentration of pollutants and soils developed on iron-poor geologic basement. In this chapter we review the approach and results of magnetic mapping in a relatively clean area, characterized by rather complex topography. Surface measurements of magnetic susceptibility were carried out after previous examination of its vertical distribution in topsoils and complex laboratory measurements of other magnetic parameters as well as scanning electron microscopy observations. Our results show that over the whole area in concern topsoil magnetic susceptibility is enhanced due to atmospherically deposited anthropogenic iron oxides (prevailing from local sources), and soil magnetometry can thus be used for delineation of anthropogenic effect on soils also in this rather complex and difficult area.


Magnetic Susceptibility Isothermal Remanent Magnetization Magnetic Mapping Subsoil Horizon Vertical Soil Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was performed with the support of the Grant Agency of the Czech Republic through grant No. 205/07/0941, Grant Agency of the Academy of Sciences of the Czech Republic through project No. IAA300120701, and Ministry of Education, Youth and Sports through project No. LA09015.


  1. Boyko T, Scholger R, Stanek H, Magprox Team (2004) Topsoil magnetic susceptibility mapping as a tool for pollution monitoring: repeatability of in situ measurements. J Appl Geophys 55:249–259CrossRefGoogle Scholar
  2. Budská E (2006) Monitoring of atmospheric deposition in the area of the Krkonoše Mts. (Giant Mts). Abstracts of Conference Geoekologické problémy Krkonoš. Vrchlabí 3-5.10.2006, KRNAP, p 11Google Scholar
  3. Chianese D, D’Emilio M, Bavusi M, Lapena V, Macchiato M (2006). Magnetic and ground probing radar measurements for soil pollution mapping in the industrial area of Val Basento (Basilicata Region, Southern Italy): a case study. Environ Geol 46:389–404CrossRefGoogle Scholar
  4. Cornell R, Schwertmann U (1996) The iron oxides. Structure, properties, reactions, occurrence and uses. VCH Verlagsgesellschaft, Weinheim, pp 338–347Google Scholar
  5. ČHMÚ (2003) Symos 97, verze 02. Systém modelování stacionárních zdrojů. Report CHMU, Praha (in Czech)Google Scholar
  6. Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. Evans ME, Heller F (2003) Environmental magnetism. Academic Press, San DiegoGoogle Scholar
  8. Eyre JK (1997) Frequency dependence of magnetic susceptibility for populations of single domain grains. Geophys J Int 129:209–211CrossRefGoogle Scholar
  9. Fiala P, Reininger D, Samek T (2008) A survey of forest pollution with heavy metals in the Natural Forest Region (NFR) Moravskoslezske Beskydy with particular attention to Jablunkov Pass. J Forest Sci 54:64–72Google Scholar
  10. Fialová H, Maier G, Petrovský E, Kapička A, Boyko T, Scholger R (2006) Magnetic properties of soils from sites with different geological and environmental settings. J Appl Geophys 59:273–283CrossRefGoogle Scholar
  11. Hanesch M, Maier G, Scholger R (2003) Mapping heavy metal distribution by measuring the magnetic susceptibility of soils. J Phys IV France 107:605–608CrossRefGoogle Scholar
  12. Hanesch M, Scholger R, Dekkers MJ (2001) The application of fuzzy c-means cluster analysis and non- linear mapping to a soil data set for the detection of polluted sites. Phys Chem Earth 26:885–891CrossRefGoogle Scholar
  13. Heller F, Strzyszcz Z, Magiera T (1998) Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J Geophys Res 103/B8:767–774Google Scholar
  14. Kapička A, Petrovský E, Ustjak S, Macháčková K (1999) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66:291–297CrossRefGoogle Scholar
  15. Kapička A, Jordanova N, Petrovský E, Podrázský V (2003) Magnetic study of weakly contaminated forest soils. Water Air Soil Pollut 148:31–44CrossRefGoogle Scholar
  16. Kapička A, Jordanova N, Petrovský E, Ustjak S (2001) Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J Appl Geophys 48:93–102CrossRefGoogle Scholar
  17. Kapička A, Petrovský E, Fialová H, Podrázský V, Dvořák I (2008) High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Stud Geophys Geod 52:271–284CrossRefGoogle Scholar
  18. Lecoanet H, Lévêque F, Segura S (1999) Magnetic susceptibility in environmental applications: comparison of field probes. Phys Earth Planet Inter 115:191–204CrossRefGoogle Scholar
  19. Magiera T, Strzyszcz Z (2000) Ferrimagnetic minerals of anthropogenic origin in soils of some Polish national parks. Water Air Soil Pollut 124:37–48CrossRefGoogle Scholar
  20. Magiera T, Strzyszcz Z, Kapička A, Petrovský E, MAGPROX Team (2006) Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130:299–311CrossRefGoogle Scholar
  21. Maher BA, Taylor RM (1988) Formation of ultrafine – grained magnetite in soils. Nature 336:368–370CrossRefGoogle Scholar
  22. Maier G, Scholger R, Schon J (2006) The influence of soil moisture on magnetic susceptibility measurements. J Appl Geophys 59:162–175CrossRefGoogle Scholar
  23. MŽP R (2007) Statistická ročenka životního prostředí České republiky 2006 – Statistical Environmental Yearbook of the Czech Republic 2006. MZP CR, Praha 2007 (in Czech)Google Scholar
  24. Oldfield F, Hunt A, Jones MDH, Chester R, Dearing JA, Olsson L, Prospero JM (1985) Magnetic differentiation of atmospheric dusts. Nature 317:516–518CrossRefGoogle Scholar
  25. Petrovský E, Kapička A, Jordanova N, Knab M, Hoffmann V (2000) Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems, Environ Geol 39:312–318CrossRefGoogle Scholar
  26. Petrovský E, Ellwood BB (1999) Magnetic monitoring of air, land and water pollution. In: Maher BA, Thompson R (eds) Quaternary climates, environments and magnetism. Cambridge University Press, CambridgeGoogle Scholar
  27. Petříková V (1990) Výskyt imisí v ovzduší a obsah TK v zemědělských plodinách. Rostlinná výroba 36:367–378 (in Czech)Google Scholar
  28. Plamínek J (2007) The geology. In: Flousek J, Hartmanová O, Štursa J, Potocki, J (eds) The giant Mts.- nature, history, life. Baset, Praha, pp 83–102. (in Czech)Google Scholar
  29. Podrázský V (2001) Heavy metals and microelements content of humus forms in different regions of the Czech Republic. In: Borůvka L (ed) Soil Science: Past, Present and Future. Book of Abstracts. Czech University of Agriculture, Praha, p 97Google Scholar
  30. Podrázský V, Vacek S, Mikeska M, Boček M (2007) Status and development of soils in the bilateral biosphere reserve Krkonoše. Opera Concortica 44:129–139Google Scholar
  31. Schibler L, Boyko T, Ferdyn M, Gajda B, Holl S, Jordanova N, Rosler W, Magprox Team (2002) Topsoil magnetic susceptibility mapping: data reproducibility and compatibility, measurement strategy. Stud Geophys Geod 46:43–57CrossRefGoogle Scholar
  32. Schmidt A, Yarnold R, Hill M, Ashmore M (2005) Magnetic susceptibility as proxy for heavy metal pollution: a site study. J Geochem Explor 85:109–117CrossRefGoogle Scholar
  33. Scholger R (1998) Heavy metal pollution monitoring by magnetic susceptibility measurements applies to sediments of the river Mur (Styria, Austria). Eur J Environ Eng Geophys 3:25–37Google Scholar
  34. Spiteri C, Kalinski V, Rösler W, Hoffmann V, Appel E, MAGPROX team (2005) Magnetic screening of pollution hotspot in the Lausity area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ Geol 49:1–9CrossRefGoogle Scholar
  35. Strzyszcz Z (1999) Heavy metal contamination in mountain soils of Poland as a result of anthropogenic pressure. Biol Bull 26:593–605Google Scholar
  36. Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, LondonGoogle Scholar
  37. Wang XS, Qin Y (2005) Correlation between magnetic susceptibility and heavy metals in urban topsoil: a case study from the city of Xuzhou, China. Environ Geol 49: 10–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aleš Kapička
    • 1
  • Eduard Petrovský
    • 1
  • Neli Jordanova
    • 2
    • 3
  • Vilém Podrázský
    • 4
  1. 1.Institute of Geophysics AS CR, v.v.i.Prague 4Czech Republic
  2. 2.National Institute of Geophysics, Geodesy and Geography, BASSofiaBulgaria
  3. 3.Geophysical Institute, BASSofiaBulgaria
  4. 4.Czech University of Life SciencesPrague 6Czech Republic

Personalised recommendations