Magnetic Record in Cave Sediments: A Review

  • Pavel Bosák
  • Petr Pruner
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 1)


Dating cave sediments by the application of the palaeomagnetic method – magnetostratigraphy – is a difficult and sometimes risky task, as the method is comparative in its principles and does not provide numerical ages. For dating clastic cave sediments and speleothems it is limited by the complex conditions occurring underground so that it is often necessary to combine it with other methods that offer supplementary absolute-, calibrate-, relative- or correlate-ages. Interpretation of magnetostratigraphic results faces other serious problems that may endanger palaeomagnetic studies in given caves if they are not detected. The sedimentary fills of a number of profiles are separated into individual sequences and cycles, divided by breaks in deposition (unconformities). The dynamic character of cave fill deposition is reflected in the start or termination of individual magnetozones at unconformities in a number of profiles. The general character of cave depositional environments with their numbers of post-depositional changes, hiatuses, reworking and re-deposition does not allow precise calculation of the temporal duration of individual interpreted magnetozones. All these factors contribute to the fact that exact calibration of the geometric characteristics of the magnetostratigraphic logs with the GPTS cannot be attained at all or only with problems, if it is not adjusted using results of other dating methods.


Cave System Karst Process Fission Track Analysis Palaeomagnetic Data Cave Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The text was prepared in the frame of Institute Research Plan No. CEZ AV0Z30130516, grant project of the Grant Agency of the Academy of Science of the Czech Republic No. IAA300130701, and program KONTAKT No. MEB 090908.


  1. Audra P (1996) L’rapport de l’étude des remplissages à la connaissance de la karstogenèse: le cas du chourum du Goutourier (Massif du Dévoluy, Hautes-Alpes). Revue d’analyse spatiale quantitative et appliquée, Mélanges Maurice Julian “Géomorphologie, risques naturels et aménagement”, 38–39, 109–120, NiceGoogle Scholar
  2. Audra P (2000a) Le karst haut alpin du Kanin (Alpes juliennes, Slovénie-Italie). Etat des connaissances et données récentes sur le fonctionement actuel et l´évolution plio-quaternaire des structures karstiques. Karstologia 35:27–38Google Scholar
  3. Audra P (2000b) Pliocene and Quaternary Karst Development in the French Prealps – Speleogenesis and Significance of Cave Fill. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of Karst Aquifers. National Speleological Society, HuntsvilleGoogle Scholar
  4. Audra P, Bini A, Camus H, Delange P (in prep) Les sédiments de la grotte de Clamouse (Hérault). Mémoires de Spéléo-club du ParisGoogle Scholar
  5. Audra P, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PJ, Kunaver J, Monbaron M, Šušteršič F, Tognini P, Trimmel H, Wildberger A (2006) Cave genesis in the Alps between the Miocene and today: a review. Z Geomorphol NF 50:153–176Google Scholar
  6. Audra P, Bini A, Gabrovšek F, Häuselmann P, Hobléa F, Jeannin PJ, Kunaver J, Monbaron M, Šušteršič F, Tognini P, Trimmel H, Wildberger A (2007) Cave and karst evolution in the Alps and their relation to paleoclimate and paleotopography. Acta Carsologica 36:53–67Google Scholar
  7. Audra P, Camus H, Rochette P (2001) Le karst de plateaux jurassique de la moyenne vallée de l´Ardèche: datation par paléomagnetisme des phases d´évolution plio-quaternaires (aven de la Combe Rajeau). Bull Soc Géol Fr 172:121–129CrossRefGoogle Scholar
  8. Audra P, Quinif Y, Rochette P (2002) The genesis of the Tennengebirge karst and caves (Salzburg, Austria). J Karst Cave Stud 64:153–164Google Scholar
  9. Audra P, Lauritzen SE, Rochette P (1999) Datations de sédiments (U/Th et paléomagnétisme) d´un hyperkarst de Papouasie-Nouvelle-Guinée (Montagnes Nakanaï, Nouvelle-Bretagne). Karst 99. Colloque européen. Des paysages du karst au géosysteme karstique: dynamiques, structures et enregistrement karstiques, Etudes de géographie physique, (suppl. XXVIII):43–54, CAGEP, Aix-en-ProvenceGoogle Scholar
  10. Audra P, Rochette P (1993) Premières traces de glaciations du Pléistocène inférieur dans le massif des Alpes. Datations par paléomagnetisme de remplissages à la grotte Valliers (Vercors, Isère, France). Compte-rendus à l´Académie des Sci 2(11):1403–1409Google Scholar
  11. Auler RS, Smart PL, Tarling DH and Farrant AR (2002) Fluvial incision rates derived from magnetostratigraphy of cave sediments in the cratonic area of eastern Brazil. Z Geomorphol 46(3):391–403Google Scholar
  12. Bella P, Bosák P, Głazek J, Hercman H, Kicińska D, Nowicki T, Pavlarčik S, Pruner P, (2005) The antiquity of the famous Belianská Cave (Slovakia). 14th International Congress of Speleology, Athens-Kalamos. Final Programme & Abstract Book, Athens, pp 144–145Google Scholar
  13. Bella P, Bosák P, Głazek J, Hercman H, Kadlec J, Kicińska D, Komar M, Kučera M, Pruner P (2007a) Datovanie výplní Belianskej jaskyne: geochronologické záznamy jej genézy. Aragonit 12:127–128. Liptovský MikulášGoogle Scholar
  14. Bella P, Bosák P, Pruner P, Hochmuth Z, Hercman H (2007b) Magnetostratigrafia jaskynných sedimentov a speleogenéza Moldavskej jaskyne a spodných častí Jasovskej jaskyne. – Slovenský kras, XLV:15–42. Liptovský MikulášGoogle Scholar
  15. Bosák P (1989) Problems of the origin and fossilization of karst forms. In: Bosák P, Ford DC, Głazek J, Horáček I (eds) Paleokarst. A Systematic and Regional Review, 577–598, Elsevier–Academia, Amsterdam–PrahaGoogle Scholar
  16. Bosák P (2002) Karst processes from the beginning to the end: how can they be dated? In: Gabrovšek F (ed) Evolution of karst: from prekarst to cessation. Carsologica Založba ZRC, Postojna–Ljubljana, pp 191–223Google Scholar
  17. Bosák P (2003) Karst processes from the beginning to the end: how can they be dated? Speleogenesis Evol Karst Aquifers 1(3):24Google Scholar
  18. Bosák P (2008) Karst processes and time. Geologos 14:15–24. PoznańGoogle Scholar
  19. Bosák P, Bella P, Cílek V, Ford DC, Hercman H, Kadlec J, Osborne A, Pruner P (2002a) Ochtiná Aragonite Cave (Slovakia): Morphology, Mineralogy and Genesis. Geol Carpathica 53(6):399–410Google Scholar
  20. Bosák P, Ford DC, Głazek J (1989) Terminology. In: Bosák P, Ford DC, Głazek J, Horáček I (eds) Paleokarst. A systematic and regional review. Elsevier–Academia, Amsterdam–Praha, pp 25–32Google Scholar
  21. Bosák P, Bella P, Cílek V, Ford DC, Hercman H, Kadlec J, Osborne A, Pruner P (2005a) Ochtiná Aragonite Cave (Slovakia): morphology, mineralogy and genesis. Speleogenesis Evol Karst Aquifers, 3, 2, 16 ppGoogle Scholar
  22. Bosák P, Głazek J, Horáček I, Szynkiewicz A (1982) New locality of Early Pleistocene vertebrates – Žabia Cave at Podlesice, Central Poland. Acta Geol Pol 32(3–4):217–226, WarszawaGoogle Scholar
  23. Bosák P, Hercman H, Kadlec J, Móga J, Pruner P (2004a) Palaeomagnetic and U-series dating of cave sediments in Baradla Cave, Hungary. Acta Carsologica 33/2(13):219–238Google Scholar
  24. Bosák P, Hercman H, Mihevc A, Pruner P (2002b) High resolution magnetostratigraphy of speleothems from Snežna Jama, Kamniške–Savinja Alps, Slovenia. Acta Carsologica 31/3(1):15–32Google Scholar
  25. Bosák P, Knez M, Otrubová D, Pruner P, Slabe T, Venhodová D (2000a) Palaeomagnetic research of fossil cave in the highway construction at Kozina, SW Slovenia. Acta Carsologica 29/2(1):15–33Google Scholar
  26. Bosák P, Knez M, Pruner P, Sasowsky I, Slabe T, Šebela S (2007a) Palaeomagnetic research into unroofed caves opened during the highway construction at Kozina, SW Slovenia. – Annales (Anali za istrske in mediteranske študije), Series Historia Naturalis, 17(2):249–260. KoperGoogle Scholar
  27. Bosák P, Knez M, Pruner P, Sasowsky I, Slabe T . (2007b) Paleomagnetne raziskave jame brez stropa pri Kozini. In: Knez M, Slabe T (eds) Kraški pojavi, razkriti med gradnjo slovenskih avtocest. Založba ZRC. Ljubljana, pp 185–194Google Scholar
  28. Bosák P, Mihevc A, Pruner P (2004b) Geomorphological evolution of the Podgorski Karst, SW Slowenia: contribution of magnetostratigraphic research of the Črnotiče II site with Marifugia sp. Acta Carsologica 33/1(12):175–204Google Scholar
  29. Bosák P, Mihevc A, Pruner P, Melka K, Venhodová D, Langrová A (1999) Cave fill in the Črnotiče Quarry, SW Slovenia: palaeomagnetic, mineralogical and geochemical study. Acta Carsologica 28(2):15–39Google Scholar
  30. Bosák P, Pruner P, Hercman H, Calligaris R, Tremul A (2005b) Paleomagnetic analysis of sediments in Pocala Cave and Borgo Grotta Gigante (Trieste region, Italy). Ipogea 4(2004):37–51, TriesteGoogle Scholar
  31. Bosák P, Pruner P, Kadlec J (2003) Magnetostratigraphy of cave sediments: application and limits. Studia Geophys Geodaetica 47(2):301–330CrossRefGoogle Scholar
  32. Bosák P, Pruner P, Mihevc A, Zupan Hajna N (2000b) Magnetostratigraphy and unconformities in cave sediments: case study from the Classical Karst, SW Slovenia. Geologos 5:13–30, PoznańGoogle Scholar
  33. Bosák P, Pruner P, Mihevc A, Zupan Hajna N, Horáček J, Kadlec J, Man O, Schnabl P (2005c) Palaeomagnetic and palaeontological research in Račiška pečina Cave, SW Slovenia. 14th International Congress of Speleology, Athens-Kalamos. Final Programme and Abstract Book, 204–205, AthensGoogle Scholar
  34. Bosák P, Pruner P, Zupan Hajna N (1998) Paleomagnetic research of cave sediments in SW Slovenia. Acta Carsologica 27/2(3):151–179Google Scholar
  35. Brock A, McFadden PL, Partridge TC (1977) Preliminary palaeomagnetic results from Makapansgat and Swartkrans. Nature 266:249–250CrossRefGoogle Scholar
  36. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res 100(B4):6093–6095CrossRefGoogle Scholar
  37. Chess DL, Chess CA, Sasowsky ID, Schmidt VA, White WB (2010) Clastic sediments in the Butler Cave – Sinking Creek System, Virginia, USA. Acta Carsologica 39(1):11–26Google Scholar
  38. Colman SM, Pierce KL (2000) Classification of Quaternary geochronologic methods. In: Noller JS, Sowers JM, Lettis WR (eds) Quaternary geochronology. Methods and Applications, American Geophysical Union, Washington, DC, pp 2–5Google Scholar
  39. Creer KM, Kopper JS (1974) Paleomagnetic dating of cave paintings in Tito Bustillo Cave, Asturias, Spain. Science 168:348–350CrossRefGoogle Scholar
  40. Creer KM, Kopper JS (1976) Secular oscillations of the geomagnetic field recorded by sediment deposited in caves in the Mediterranean region. Geophys J R Astronomical Soc 45:35–58Google Scholar
  41. Ellwood BB (1971) An archeomagnetic measurement of the age and sedimentation rate of Climax cave sediments, southwest Georgia. Am J Sci 271:304–310CrossRefGoogle Scholar
  42. Ellwood BB (1999) Identifying sites and site correlation using electrical and magnetic methods. Program, 64th annual meeting of the society for american archaeology, Chicago, p 101Google Scholar
  43. Ellwood BB, Petruso KM, Harrold FB, Korkuti M (1996) Paleoclimate characterization and intra-site correlation using magnetic susceptibility measurements: and example from Konispol Cave, Albania. J Field Archaeol 23:263–271CrossRefGoogle Scholar
  44. Fisher R (1953) Dispersion on a sphere. Proc Roy Soc A 217:295–305CrossRefGoogle Scholar
  45. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Unwin Hyman, London, 601 ppGoogle Scholar
  46. Ford DC, Williams PW (2007) Karst hydrology and geomorphology. Wiley, Chichester, 562 ppGoogle Scholar
  47. Gospodarić R (1988) Paleoclimatic record of cave sediments from Postojna karst. Annales de la Société Géologique de Belgique 111:91–95Google Scholar
  48. Hercman H, Bella P, Gradziński M, Glazek J, Lauritzen SE, Lovlie R (1997) Uranium-series dating of speleothems from Demänova Ice Cave: a step to age estimation of the Demänova Cave System (The Nízke Tatry Mts., Slovakia). Ann Soc Geologorum Poloniae 67:439–450Google Scholar
  49. Herries AIR (2003) Magnetostratigraphy of the South African hominid palaeocaves. Am J Phys Anthropol 113(Suppl. 36)Google Scholar
  50. Herries AIR, Adams JW, Kuykendall KL, Shaw J (2006a) Speleology and magnetobiostratigraphic chronology of the GD 2 locality of the Gondolin hominin-bearing paleocave deposits, North West Province, South Africa. J Hum Evol 51(6):617–631CrossRefGoogle Scholar
  51. Herries AIR, Reed KE, Kuykendall KL, Latham AG (2006b) Speleology and magnetobiostratigraphic chronology of Buffalo Cave fossil site, Makapansgat, South Africa. Quaternary Res 66(2):233–245CrossRefGoogle Scholar
  52. Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadelupe Mountains, New Mexico and Texas. N M Bureau Mines Miner Resour Bull 117:1–152, SocorroGoogle Scholar
  53. Hobléa F (1999) Contribution à la connaissance et à la gestion environnementale de géosystèmes karstiques montagnards: Etudes savoyarde. PhD Thesis, Université de Lyon, 995 ppGoogle Scholar
  54. Homonko P (1978) A palaeomagnetic study of cave and lake deposits in Britain. MSc. Thesis, University of Newcastle upon TyneGoogle Scholar
  55. Horáček I, Bosák P (1989) Special characteristics of paleokarst studies. In: Bosák P, Ford DC, Głazek J, Horáček I (eds) Paleokarst. A systematic and regional review, Elsevier–Academia, Amsterdam–Praha, pp 565–568Google Scholar
  56. Horáček I, Kordos L (1989) Biostratigraphic investigations in paleokarst. In: Bosák P, Ford DC, Głazek J, Horáček I (eds) Paleokarst. A systematic and regional review, Elsevier–Academia, Amsterdam–Praha, pp 599–612Google Scholar
  57. Horáček I, Mihevc A, Zupan Hajna N, Pruner P, Bosák P (2007) Fossil vertebrates and paleomagnetism update one of the earlier stages of cave evolution in the Classical Karst, Slovenia: Pliocene of Črnotiče II site and Račiška pečina. Acta Carsologica 37/3:451–466Google Scholar
  58. Jurková N, Bosák P, Komar M, Pruner P (2008) Relict flowstone at Machnín (the Ještěd Ridge, North Bohemia, Czech Republic) and its importance for relief evolution. Geomorphol Slovaca Bohemica 2(2007):19–24. BratislavaGoogle Scholar
  59. Kadlec J (2003) Reconstruction of flow directions by measurements of anisotropy of magnetic susceptibility in fluvial sediments of the Ochozská Cave, Moravan Karst. Geologické výzkumy na Moravě a ve Slezsku v r. X:5–7, BrnoGoogle Scholar
  60. Kadlec J, Chadima M, Pruner P, Schnabl P (2005) Paleomagnetic dating of sediments in the Za Hájovnou Cave in Javoříčko. Přírodovědné studie Muzea Prostějovska, 8:75–82Google Scholar
  61. Kadlec J, Hercman H, Beneš V, Šroubek P, Diehl JF, Granger D (2001) Cenozoic history of the Moravian Karst (northern segment) Cave sediments and karst morphology. Acta Musei Moraviae Sci Geol LXXXVII:111–160, BrnoGoogle Scholar
  62. Kadlec J, Hercman H, Danišik M, Pruner P, Chadima M, Schnabl P, Šlechta S, Grygar T, Granger D (2004a) Dating of cave sediments and reconstruction of karst morphology of the Low Tatra Mts. 3. Národní speleologický kongres, Rozšířené abstrakty, Česká speleologická společnost, Praha, pp 30–32Google Scholar
  63. Kadlec J, Hlaváč J, Horáček I (2002a) Sedimenty jeskyně Arnika v Českém krasu. Český kras XXVIII:13–15, BerounGoogle Scholar
  64. Kadlec J, Hercman H, Nowicki T, Głazek J, Vít J, Šroubek P, Diehl JF, Granger D (2000) Dating of the Holštejnská Cave deposits and their role in the reconstruction of semi-blind Holštejn Valley Cenozoic history (Czech Republic). Geologos 5:57–64, PoznańGoogle Scholar
  65. Kadlec J, Jäger, O., Kočí A, Minaříková D (1992) The age of sedimentary fill in the Aragonitová Cave. Český kras XVII:16–23, BerounGoogle Scholar
  66. Kadlec J, Jäger O, Kočí A, Minaříková D (1995) The age of sedimentary fill in the Aragonitová Cave. Studia Carsologica 6:20–31, BrnoGoogle Scholar
  67. Kadlec J, Pruner P, Hercman H, Chadima M, Schnabl P, Šlechta S (2004b) Magnetostratigraphy of sediments preserved in caves of the Low Tatra Mts. Výskum, využívanie a ochrana jaskýň (4):15–19, Správa Slovenských jaskýň, Liptovský MikulášGoogle Scholar
  68. Kadlec J, Pruner P, Venhodová D, Hercman H, Nowicki T (2002b) Age and genesis of sediments in Šošůvská Cave (Moravian Karst, Czech Republic). Acta Musei Moraviae Sci Geol LXXXVIII:229–243, BrnoGoogle Scholar
  69. Kadlec J, Pruner P, Venhodová D, Hercman H, Nowicki T (2004c) Age and genesis of sediments in the Ochozská Cave, Moravian Karst. 3. Národní speleologický kongres, Rozšířené abstrakty. Česká speleologická společnost, Praha, pp 33–36Google Scholar
  70. Kadlec J, Schnabl P, Pruner P, Lisá L, Žák K, Hlaváč J (2003) Paleomagnetic dating of cave sediments in the Czech Karst. Český Kras XXIX:21–25, BerounGoogle Scholar
  71. Kadlec J, Táborský Z (2002) Tertiary cave sediments in the Malá dohoda Quarry near Holštejn in the Moravan Karst. Geologické výzkumy na Moravě a ve Slezsku v r. 2001(IX):30–33, BrnoGoogle Scholar
  72. Kirschvink JL. (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astronomical Soc 62:699–718Google Scholar
  73. Kopper JS (1975) Preliminary note on the paleomagnetic reversal record obtained from two Mallorcan caves. Endins 2:7–8, Palma de MallorcaGoogle Scholar
  74. Kopper JS, Creer KM (1973) Cova dets Alexandres, Majorca: paleomagnetic dating and archaeological interpretation of its sediments. Caves Karst Sci 15(2):13–20Google Scholar
  75. Kopper JS, Creer KM (1976) Palaeomagnetic dating stratigraphic interpretation in archaeology. MASCA Newsletter, University of Pennsylvania, pp 12, 1–3Google Scholar
  76. Kostrzewski A, Noel M, Thistlewood L, Zwoliński Z (1991) Cave deposits of the Chocholowska Valley. Geografia (UAM) 50:289–309, PoznańGoogle Scholar
  77. Kukla J, Ložek V. (1958) K problematice výzkumu jeskynních výplní (To the problem of research of cave fills). Československý Kras 11:19–59, PrahaGoogle Scholar
  78. Kyle M (1990) Paleomagnetism of speleothems in Gardner Cave, Washington. National Speleological Soc Bull 52(2):87–94Google Scholar
  79. Latham AG (1981) The Palaeomagnetism, Rock Magnetism and U-Th Dating of Speleothem Deposits. PhD Thesis, McMaster University, HamiltonGoogle Scholar
  80. Latham AG (1989) Magnetization of speleothems: detrital or chemical? Proceedings of the 10th international congress of speleology, Budapest, pp 1, 82–84Google Scholar
  81. Latham AG, Ford DC, Schwarcz HP, Birchall T (1989) Secular variations from Mexican stalagmites: their potential and problems. Phys Earth Planetary Inter 56:34–48CrossRefGoogle Scholar
  82. Latham A, Schwarcz HP, Ford DC (1979) Palaeomagnetism of stalagmite deposits. Nature 280(5721):383–385CrossRefGoogle Scholar
  83. Latham A, Schwarcz HP, Ford DC (1986) The paleomagnetism and U-Th dating of Mexican stalagmite, DAS2. Earth Planetary Sci Lett 79:195–204CrossRefGoogle Scholar
  84. Latham A, Schwarcz HP, Ford DC (1987) Secular variations of the Earth´s magnetic field from 18.5 to 15.0 ka B.P., as recorded in a Vancouver Island stalagmite. Can J Earth Sci 24:1235–1241CrossRefGoogle Scholar
  85. Latham A, Schwarcz HP, Ford DC, Pearce GW (1982) The paleomagnetism and U-Th dating of three Canadian speleothems: evidence for the westward drift, 5.4–2.1 ka B.P. Can J Earth Sci 19:1985–1995CrossRefGoogle Scholar
  86. Lauritzen S-E, Haugen JE, Løvlie R, Gilje-Nielsen H (1994) Geochronological Potential of Isoleucine Epimerization in Calcite Speleothems. Quaternary Res 41(1):52–58CrossRefGoogle Scholar
  87. Lauritzen S-E, Løvlie R, Moe D, Østbye E (1990) Paleoclimate deduced from a multidiscipluinary study of a half-million-year-old stalagmite from Rana, northern Norway. Quaternary Res 34(3):306–316CrossRefGoogle Scholar
  88. Lean C, Latham AG, Shaw J (1995) Palaeosecular variation from a Vancouver Island stalagmite and comparison with contemporary North American records. J Geomagnet Geoelectricity 47(1):71–88Google Scholar
  89. Liu YY, Morinaga H, Horie I, Murayama H, Yakashawa K (1988) Preliminary report on palaeomagnetism of a stalagmite in Ping Le, South China. J Geomagnet Geeolectricity 15:21–22Google Scholar
  90. Løvlie R, Ellingsen KL, Lauritzen SE (1995) Paleomagnetic cave stratigraphy of sediments from Hellemofjord, northern Norway. Geophys J Int 120(2):499–515CrossRefGoogle Scholar
  91. Løvlie R, Sandnes A (1987) Palaeomagnetic excursions recorded in mid-Weichselian cave sediments from Skjonghelleren, Valderøy, W. Norway. Phys Earth Planetary Inter 45(4): 337–348CrossRefGoogle Scholar
  92. Ložek V. (1973) Příroda ve čtvrtohorách (Nature during Quaternary). Academia, Praha, 372 ppGoogle Scholar
  93. Martin K (1991) Paleomagnetism of speleothems in Gardner Cave, Washington. National Speleological Society, Bulletin 52(2), (1990):87–94Google Scholar
  94. McFadden PL, Brock A, Partridge TC (1979) Palaeomagnetism and the age of the Makapansgat hominid site. Earth Planetary Sci Lett 12:332–338Google Scholar
  95. McNeil DF, Ginsburg RN, Chang S, Kirschvink JL (1988) Magnetostratigraphic dating of shallow-water carbonates from San Salvador, Bahamas. Geology 16:8–12CrossRefGoogle Scholar
  96. McNeil DF, Grammer GM, Williams SC (1998) A 5 My chronology of carbonate platform margin aggradation, southwestern Little Bahama Bank, Bahamas. J Sedimentary Res 68(4):603–614Google Scholar
  97. Morinaga M, Inokuchi H, Yaskawa K (1989) Palaeomagnetism of stalagmites (speleothems) in SW Japan. Geophys J 96:519–528CrossRefGoogle Scholar
  98. Müller BU (1995) De Höhlensedimente des Ofenlochs. Stalactite 45(1):25–35Google Scholar
  99. Musgrave RJ, Webb JA (2004) Palaeomagnetic analysis of sediments on the Buchan Caves, Southeastern Australia, provides a pre-Late Pleistocene data for landscape and climate evolution. In: Sasowsky ID, Mylroie J (eds.) Studies of Cave Sediments. Physical and Chemical Records of Paleoclimate, Kluwer Academic/Plenum Publ., New York, NY, pp 47–69Google Scholar
  100. Noel M (1982) Caves, mud and magnetism. Caves Caving 15:28–30Google Scholar
  101. Noel M (1983) The magnetic remanence and anisotropy of susceptibility of cave sediments from Agen Allwedd, South Wales. Geophys J Roy Astronomical Soc 72:557–570Google Scholar
  102. Noel M (1985) Caves, mud and magnetism: an update. Caves Caving 27:14–15Google Scholar
  103. Noel M (1986a) The paleomagnetism and magnetic fabric of cave sediments from Pwll y Gwynt, South Wales. Phys Earth Planetary Inter 44:62–71, AmsterdamCrossRefGoogle Scholar
  104. Noel M (1986b) The paleomagnetism and magnetic fabric of sediments from Peak Cavern, Derbyshire. Geophys J Roy Astronomical Soc 84:445–454Google Scholar
  105. Noel M (1990) Palaeomagnetic and Archaeomagnetic Studies in the Caves of Guanxi. Cave Sci 17(2):73–76Google Scholar
  106. Noel M, Bull PA (1982) The palaeomagnetism of sediments from Clearwater Cave, Mulu, Sarawak. Cave Sci 9(2):134–141Google Scholar
  107. Noel M, Shaw RP, Ford TD (1984) A palaeomagnetic reversal in Early Quaternary sediments in Mason Hill, Matlock, Derbyshire. Mercian Geolol 9:235–242Google Scholar
  108. Noel M, St. Pierre S (1984) The paleomagnetism and magnetic fabric of cave sediments from Gronligrotta and Jordbrugrotta, Norway. Geophys J Roy Astronomical Soc 78:231–239Google Scholar
  109. Noel M, Thistlewood L (1989) Developments in cave sediment palaeomagnetism. In: Lowes FJ et al (eds.) Geomagnetism and palaeomagnetism. Kluwer, Dordrecht, pp 91–106Google Scholar
  110. Openshaw S, Latham A, Shaw J, Xuewen Z (1993) Preliminary results on recent palaeomagnetic secular variation recorded in speleothems fom Xingweng, Sichuan, China. Cave Science, 22, 3:93–99Google Scholar
  111. Osborne RAL (1984) Lateral facies changes, unconformities and stratigraphic reversals: their significance for cave sediments stratigraphy. Cave Sci 11(3):175–184Google Scholar
  112. Panoš V (1963) On the origin and age of denudation surfaces in the Moravian Karst. Československý kras, 14(1962–1963):29–41, PrahaGoogle Scholar
  113. Panoš V (1964) Der Urkarst in Ostflügel der Böhmishen Masse. Zeitschrift für Geomorpholologie NF 8(2):105–162Google Scholar
  114. Panuschka BC, Mylroie JE, Carew JL (1997) Stratigraphic tests of the utilization of paleomagnetic secular variation for correlation of paleosols, San Salvador Island, Bahamas. Proceedings of the 8th symposium on geology of the bahamas and other carbonate regions, bahamian field station. San Salvador, Bahamas, pp 148–157Google Scholar
  115. Papamarinopoulos S (1977) The first known European? Bull Univ Edinb 13(10):1–3Google Scholar
  116. Papamarinopoulos S (1978) Limnomagnetic studies on Greek sediments. PhD Thesis, University of Edinburgh, EdinburghGoogle Scholar
  117. Papamarinopoulos S, Creer KM (1983) The palaeomagnetism of cave sediments. In: Creer KM, Tucholka P, Barton CE (eds) Geomagnetism of baked clays and recent sediments. Elsevier, Amsterdam, 243–248Google Scholar
  118. Papamarinopoulos S, Readman PW, Maniatis Y, Simopoulos A (1987) Palaeomagnetic and mineral magnetic studies of sediments from Petralona Cave, Greece. Archaeometry 29:50–59CrossRefGoogle Scholar
  119. Papamarinopoulos S, Readman PW, Maniatis Y, Simopoulos A (1991) Paleomagnetic and mineral magnetic studies of sediment from Ball´s Cavern, Scholarie, USA. Earth Planetary Sci Lett 102:198–212CrossRefGoogle Scholar
  120. Perkins AM, Maher BA (1993) Rock magnetic studies of british speleothems. J Geomagnet Geoelectr 45:143–153Google Scholar
  121. Pons J, Moyá S, Kopper JS (1979) La fauna e mamiferos de la Cova de Canet (Esporles) y su chronologia. Endins 5–6:55–58, Palma de MallorcaGoogle Scholar
  122. Poulianos AN (1980) A new fossilised inion-parietal bone in Petralona Cave. Anthropos 7:34–39, AthensGoogle Scholar
  123. Pruner P, Bosák P (2001) Palaeomagnetic and magnetostratigraphic research of cave sediments: theoretical approach, and examples from Slovenia and Slovakia. Proceedings, 13th International Speleological Congress, 4th Speleological Congress of Latin America and the Caribbean, 26th Brazilian Congress of Speleology, Brasilia, 1:94–97, 15–22 July 2001. Brasilia DFGoogle Scholar
  124. Pruner P, Bosák P, Kadlec J, Venhodová D, Bella P (2000) Paleomagnetic research of sedimentary fill of selected caves in Slovakia. Výskum, využívanie a ochrana jaskýň. 2. vedecká konferencia s medzinárodnou účast´ou, 16.–19. novembra 1999, Demänovská Dolina. Zborník referátov. Správa Slovenských jaskýň, Liptovský Mikuláš, pp 13–25Google Scholar
  125. Pruner P, Bosák P, Kadlec J, Man O, Tulis J, Novotný L (2002) Magnetostratigraphy of the sedimentary fill of the IVth cave level in Stratenská Cave. Výskum, využívanie a ochrana jaskýň. 3. vedecká konferencia s medzinárodnou účast´ou 2001, Stará Lesná. Zborník referátov. Správa Slovenských jaskýň, Liptovský Mikuláš, pp 3–15Google Scholar
  126. Pruner P, Bosák P, Zupan Hajna N, Mihevc A (2009) Cave sediments in Slovenia: results of 10 years of palaeomagnetic research. Slovenský Kras 47(2):173–186. Liptovský MikulášGoogle Scholar
  127. Pruner P, Zupan Hajna N, Mihevc A, Bosák P, Venhodová D, Schnabl P (2010) Paleomagnetic and rockmagnetic studies of cave deposits from Račiška pečina and Pečina v Borštu caves (Classical Karst, Slovenia). Stud Geophys Geod 54:27–48CrossRefGoogle Scholar
  128. Rowe P, Austin T, Atkinson T (1988) The Quaternary evolution of the British South Pennines from uranium series and palaeomagnetic data. Annales de la Société Géologique de Belgique 111:97–106Google Scholar
  129. Sasowsky ID, Clotts RA, Crowell B, Walko SM, LaRock EJ, Harbert W (2004) Paleomagnetic analysis of a long-term sediment trap, Kooken Cave, Huntingdon County, Pennsylvania, USA. In: Sasowsky ID, Mylroie J (eds) Studies of cave sediments. Physical and chemical records of paleoclimate. Kluwer Academic/Plenum Publ., New York, NY, pp 71–81Google Scholar
  130. Sasowsky ID, Šebela S, Harbert W (2003) Concurrent tectonism and aquifer evolution >100,000 years recorded in cave sediments, Dinaric karst, Slovenia. Environ Geol 44(1):8–13Google Scholar
  131. Sasowsky ID, White WB, Schmidt VA (1995) Determination of stream incision rate in the Appalachian plateaus by using cave-sediment magnetostratigraphy. Geology 23:415–418CrossRefGoogle Scholar
  132. Schmidt VA (1982) Magnetostratigraphy of sediments in Mammoth Cave, Kentucky. Science 217:827–829CrossRefGoogle Scholar
  133. Schmidt VA, Jennings J, Bao H (1984) Dating of cave sediments from Wee Jasper, New South Wales, by magnetostratigraphy. Aust J Earth Sci 31:361–370CrossRefGoogle Scholar
  134. Šebela S, Sasowsky I (1999) Age and magnetism of cave sediments from Postojnska jama cave system and Planinska jama Cave, Slovenia. Acta Carsologica 28/2(18):293–305Google Scholar
  135. Šebela S, Sasowsky I (2000) Paleomagnetic dating of sediments in caves opened during highway construction near Kozina, Slovenia. Acta Carsologica 29/2, 23:303–312Google Scholar
  136. Šebela S, Slabe T, Kogovšek J, Hong L, Pruner P (2001) Baiyun Cave in Naigu Shilin, Yunnan Karst, China. Acta Geol Sinica (Engl. Edition) 75(3):279–287Google Scholar
  137. Shaw T (1992) The history of cave science, the exploration and study of limestone caves, to 1900. Sydney Speleological Soc, 338 pp, BroadwayGoogle Scholar
  138. Stober JC (1978) Palaeomagnetic secular variation studies on Holocene lake sediments. PhD. Thesis. University of EdinburghGoogle Scholar
  139. Stock GM, Granger DE, Sasowski ID, Anderson RS, Finkel RC (2005) Comparison of U-Th, paleomagnetic, and cosmogenic burial methods for dating caves: implications for landscape evolution studies. Earth Planetary Sci Lett 236(1–2):388–403CrossRefGoogle Scholar
  140. Springer GS, Kite JS, Schmidt VA (1997) Cave sedimentation, genesis, and erosional history in the Cheat river canyon, West Virginia. Geol Soc Am Bull 109(5):524–532CrossRefGoogle Scholar
  141. Šroubek P, Diehl JF (1995) The paleoenvironmental implications of the study of rock magnetism in cave sediments of the Moravian Karst. Knihovna České speleologické společnosti 25:29–30, PrahaGoogle Scholar
  142. Šroubek P, Diehl JF, Kadlec J, Valoch K (1996) Preliminary study on the mineral magnetic properties of sediments from the Kůlna Cave. Studia Geophys Geodaetica 3:301–312CrossRefGoogle Scholar
  143. Šroubek P, Diehl JF, Kadlec J, Valoch K (2001) A Late Pleistocene paleoclimate record based on mineral magnetic properties of the entrance facies sediments of Kulna Cave, Czech Republic. Geophys J Int 147:247–262CrossRefGoogle Scholar
  144. Thistlewood L, Noel M (1991) A paleomagnetic study of sediments from Maypole Inlet, Peak Cavern. Cave Sci 17, 1:55–58Google Scholar
  145. Turner GM, Lyons RG (1986) A paleomagnetic secular variation record from c. 120,000 yr-old New Zealand cave sediments. Geophys J Roy Astronomical Soc 87:1181–1192Google Scholar
  146. Valen V, Lauritzen SE, Løvlie R (1997) Sedimentation in a hogh-latitude karst cave: Sirijordgrotta, Nordlan, Norway. Norsk Geologisk Tidsskrift 77(4):233–250Google Scholar
  147. Verosub KL (1977) Depositional and post-depositional process in the magnetization of sediments. Rev Geophys Space Phys 15:129–143CrossRefGoogle Scholar
  148. Vrabec M, Fodor L (2006) Late Cenozoic tectonics of Slovenia: structural styles at the Northeastern corner of the Adriatic microplate. In: Pinter N, Grenerczy G, Weber J, Stein S, Medak D (eds) The Adria microplate: GPS geodesy, tectonics and hazards. NATO Science Series, IV, Earth Environ Sci 61, Springer, Dordrecht, pp 151–168CrossRefGoogle Scholar
  149. White WB (1988) Geomorphology and Hydrology of Karst Terrains. Oxford University Press, Oxford, pp 315–317Google Scholar
  150. Williams PW, Lyons RG, Wang X, Fang L, Bao H (1986) Interpretation of the paleomagnetism of cave sediments from a karst tower at Guilin. Carsologica Sinica 5(2):113–126Google Scholar
  151. Žák K, Pruner P, Bosák P, Svobodová M, Šlechta S (2007) New type of paleokarst sediments in the Bohemian Karst (Czech Republic), and their regional tectonic and geomorphological relationships. Bull Geosci 82(3):275–290. PrahaCrossRefGoogle Scholar
  152. Zupan Hajna N, Bosák P, Pruner (2007a) Raziskave jamskih sedimentov iz zapolnjene jame pri Divači. In: Knez M, Slabe T (eds) Kraški pojavi, razkriti med gradnjo slovenskih avtocest. Založba ZRC. LjubljanaGoogle Scholar
  153. Zupan Hajna N, Mihevc A, Pruner P, Bosák P (2008a) Cave Sediments from Postojnska–Planinska Cave System (Slovenia) Evidence of Multi-Phase Evolution in Epiphreatic Zone. Acta Carsologica 37(1):63–86. PostojnaGoogle Scholar
  154. Zupan Hajna N, Mihevc A, Pruner P, Bosák P (2008b) Palaeomagnetism and Magnetostratigraphy of Karst Sediments in Slovenia. Carsologica 8:1–266. Založba ZRC SAZU, Postojna–LjubljanaGoogle Scholar
  155. Zupan Hajna N, Mihevc A, Pruner P, Bosák P (2010) Palaeomagnetic research on karst sediments in Slovenia. Int J Speleol 39(2):47–60. BolognaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Geology AS CR, v.v.i.Praha 6Czech Republic

Personalised recommendations