Skip to main content

Absolute Paleointensities from an Intact Section of Oceanic Crust Cored at ODP/IODP Site 1256 in the Equatorial Pacific

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

We have investigated the magnetic mineralogy and absolute paleointensity of basalt samples from Site 1256 cored during ODP Leg 206 and IODP Expeditions 309 and 312. The site is located on the Cocos Plate 5 km east of the transition zone between marine magnetic anomalies 5Bn.2n and 5Br (~15 Ma). The deepest hole, Hole 1256D, extends 250 m through sediments and 1257 m into the igneous upper oceanic crust generated by superfast seafloor spreading (>200 mm/yr) along the East Pacific Rise. This is the first drill site to penetrate an in situ and intact section of crust. The section consists of about 811 m of basaltic sheet flows and massive lavas, 346 m of sheeted-dike complex, and 100 m of gabbros and granoblastic dikes. Rock magnetic investigations included thermomagnetic analyses, alternating field, thermal demagnetization, saturation IRM, magnetic grain-size and coercivity analyses. Curie points identified titanomagnetites and titanomaghemites as the magnetic carriers and grain-size studies indicate that the carriers are mixtures of single domain (SD) and pseudosingle domain (PSD) grains. Using the Thellier-Coe method, we have attempted paleointensity determinations for 82 specimens sampled from different “stratigraphic” levels of the core. Partial thermal remanent magnetization (pTRM) checks were performed systematically one temperature step down from the last pTRM acquisition in order to document magnetomineralogical changes. The determinations were obtained from the slope of the pTRM gained vs. natural remanent magnetization lost in the Arai diagrams. Only about 6% of the samples (i.e. 5 samples) yielded marginally acceptable results. The paleofield estimated ranges from 16 to 28 μT and has a mean virtual axial dipole moment (VADM) of 5 × 1022 A/m2, which is concordant with the average intensity for the period between 0 and 160 Myr (4 ± 2 × 1022 A/m2) and is about 2/3 of the strength of the present field (~8 × 1022 A/m2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken MJ, Allsop AL, Bussel GD, Winter MB (1988) Determination of the intensity of the Earth’s magnetic field during archeological times: reliability of the thellier technique. Rev Geophys 26:3–12

    Article  Google Scholar 

  • Alt JC, Teagle DAH, Umino S, Miyashita S, Banerjee NR, the IODP Expeditions 309 and 312 (2007) Scientists, and the ODP Leg 206 scientific party. Sci Drilling 4:4–10. doi:10,2204/iodp.sd.4.012007

    Google Scholar 

  • Bleil U, Petersen N (1983) Variations in magnetization intensity and lowtemperature titanomagnetite oxidation of ocean floor basalts. Nature 301:384–388

    Article  Google Scholar 

  • Carlut J, Kent DV (2000) Paleointensity record in a zero-age submarine basalt glasses: testing a new dating technique for recent MORB’s. Earth Planet Sci Lett 183:389–401

    Article  Google Scholar 

  • Carlut J, Kent DV (2002) Grain-size dependent paleointensity results from very recent mid-ocean ridge basalts. J Geophys Res 107. doi:10.1029/2001JB000439

    Google Scholar 

  • Channell JET, Xuan C, Hodell DA (2009) Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet Sci Lett 283:14–23

    Article  Google Scholar 

  • Coe RS (1967) Paleointensities of the earth’s magnetic field determined from tertiary and quaternary rocks. J Geophys Res 72:3247–3262

    Article  Google Scholar 

  • Coe RS, Gromee S, Mankinen EA (1978) Geomagnetic paleointensities from radiocarbon dated lava flows on Hawaii and the question of the Pacific nondipole low. J Geophys Res 83:1740–1756

    Article  Google Scholar 

  • Coe RS, Riisager J, Plenier G, Leonhardt abd R, Krása D (2004). Multidomain behavior during Thellier paleointensity experiments: results from the 1915 Mt. Lassen flow. Phys Earth Planet Int 147:141–153

    Article  Google Scholar 

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titano-magnetites: grain size and compositional dependence. Phys Earth Planet Ints 13:260–267

    Article  Google Scholar 

  • Dunlop DJ (2002) Theory and application of the Day plot (Mrs/Ms vs. Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res 107:EM 4-1–EPM 4-22

    Google Scholar 

  • Dunlop DJ, Hale CJ (1976) A determination of paleomagnetic field intensity using submarine basalts drilled near the Mid-Atlantic Ridge. J Geophys Res 81:4166–4172

    Article  Google Scholar 

  • Dunlop DJ, Zhang B, Ozdemir O (2005) Linear and nonlinear Thellier paleointensity behavior of natural minerals. J Geophys Res 110. doi:10.1029/2004JB003095

    Google Scholar 

  • Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Treatise on geophysics, vol 5, Geomagnetism. Elsevier, Amsterdam, pp 455–507

    Chapter  Google Scholar 

  • Gee JS, Lawrence RM, Hurst SD (1997) Remanence characteristics of gabbros from the mark area: implications for crustal magnetization. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of ODP, Scientific results, vol 153. Ocean Drilling Program, College Station, TX, pp 429–436

    Google Scholar 

  • Gee J, Meurer WP (2002) Slow cooling of middle and lower oceanic crust inferred from multicomponent magnetizations of gabbroic rocks from the Mid-Atlantic Ridge south of the Kane fracture zone (MARK) area. J Geophys Res 107:18

    Article  Google Scholar 

  • Gromme S, Mankinen EA, Marshall M, Coe RS (1979) Geomagnetic Paleointensities by the Thellier’s method from submarine pillow basalts: effect of seafloor weathering. J Geophys Res 84:3553–3575

    Article  Google Scholar 

  • Guyodo Y, Valet J-P (1999) Global changes in geomagnetic intensity during the past 800 thousand years. Nature 399:249–252

    Article  Google Scholar 

  • Herrero-Bervera E, Valet JP (2005) Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA). Earth Planet Sci Lett 234:279–296

    Article  Google Scholar 

  • Herrero-Bervera E, Valet JP (2009) Testing determinations of absolute paleointensity from the 1955 and 1960 Hawaiian flows. Earth Planet Sci Lett 287:420–433

    Article  Google Scholar 

  • Johnson HP, Merrill RE (1974) Low-temperature oxidation of a single domain magnetite. J Geophys Res 79:5533–5534

    Article  Google Scholar 

  • Juarez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the Earth’s magnetic field over the past 160 million years. Nature 394:878–881

    Article  Google Scholar 

  • Juarez MT, Tauxe L (2000) The intensity of the time-averaged geomagnetic field: the last 5 Myr. Earth Planet Sci Lett 175:169–180

    Article  Google Scholar 

  • Koepke J, et al (2008) Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem Geophys Geosyst 9:Q07O09. doi:10.1029/2008gc001939

    Article  Google Scholar 

  • Krása D, Matzka J (2007) Inversion of titanomaghemite in oceanic basalt during heating. Phys Earth Planetary Inter 160:169–179

    Article  Google Scholar 

  • Matzka J, Krása D (2007) Oceanic basalt continuous thermal demagnetization curves. Geophys J Int 169:941–950

    Article  Google Scholar 

  • Matzka J, Krása D, Kunzmann T, Schult A, Petersen N (2003) Magnetic state of 10–40 Ma old ocean basalts and its implications for natural remanent magnetization. Earth Planet Sci Lett 206:541–553

    Article  Google Scholar 

  • Mejia V, Opdyke ND, Perfit MR (1996) Paleomagnetic field intensity recorded in submarine basaltic glass from the East Pacific Rise, the last 69 Ka. Geophys Res Lett 23:475–478

    Article  Google Scholar 

  • Pariso JE, Johnson HP (1991) Alteration processes at Deep Sea Drilling Project/Ocean Drilling Program Hole 504I at the Costa Rica Rift: implications for magnetization of oceanic crust. J Geophys Res 96:11,703–11,722

    Article  Google Scholar 

  • Pariso JE, Johnson HP (1993a) Do lower crustal rocks record reversals of the earth’s magnetic field? Magnetic petrology of oceanic gabbros from ocean drilling program hole 735B. J Geophys Res 98:16013–16032. doi:10.1029/93jb00933

    Article  Google Scholar 

  • Pariso JE, Johnson HP (1993b) Do layer 3 rocks make a significant contribution to marine magnetic anomalies? In situ magnetization of gabbros at ocean drilling program hole 735B. J Geophys Res 98:16033–16052. 10.1029/93jb01097

    Article  Google Scholar 

  • Perrin M, Shcherbakov V (1998) Paleointensity database updated. Eos 79:198

    Article  Google Scholar 

  • Petersen N, Eisenach P, Bleil U (1979) Low temperature alteration of the magnetic minerals in ocean floor basalts: in Deep Drilling Results in the Atlantic Ocean. In: Talwani M, Harrison CGA, Hayes DE (eds) Ocean Crust Maurice Ewing Series, vol 2.. AGU, Washington, DC, pp 169–209

    Google Scholar 

  • Pick T, Tauxe L (1993a) Holocene paleointensity: Thellier experiments on submarine basaltic glass from the East Pacific Rise. J Geophys Res 98:17949–17964

    Article  Google Scholar 

  • Pick T, Tauxe L (1993b) Geomagnetic palaeointensities during the Cretaceous Normal superchron measured using submarine basaltic glass. Nature 366:238–242

    Article  Google Scholar 

  • Selkin PA, Tauxe L (2000) Long-term variations in palaeointensity. Philos Trans R Soc London A 358:1065–1088

    Article  Google Scholar 

  • Tauxe L (1993) Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Rev Geophys 31:319–354

    Article  Google Scholar 

  • Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, the Expedition 309/312 Scientists (2006) Superfast spreading rate crust 2 and 3. Proceeding of IODP, vol 309/312. Integrated Ocean Drilling Program Management International, Inc., Washington, DC. doi:10.2204/iodp. Proc.309312.2006 pp

    Google Scholar 

  • Valet JP (2003) Time variation in geomagnetic intensities. Rev Geophys 41:1/1004

    Article  Google Scholar 

  • Valet JP, Herrero-Bervera E (2000) Paleointensity experiments using alternating Field demagnetization. Earth Planet Sci Lett 177:43–58

    Article  Google Scholar 

  • Valet JP, Herrero-Bervera E, Carlut J, Kondopoulou D (2010) A selective procedure for absolute paleointensity in lava flows. Geophys Res Lett 37. doi:10.1029/2010GL044100, 2010

    Google Scholar 

  • Valet JP, Tric E, Herrero-Bervera E, Meynadier L, Lockwood JP (1998). Absolute paleointensity from Hawaiian lavas younger than 35 ka. Earth Planet Sci Lett 161:19–32

    Article  Google Scholar 

  • Vine FJ, Matthews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949

    Article  Google Scholar 

  • Wilson DS, Teagle DAH, Acton GD et al (2003) Proceedings of ODP, initial reports, vol 206. doi:10.2973/odp.proc.ir.206.2003

    Google Scholar 

  • Wilson DS, et al (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020

    Article  Google Scholar 

  • Xu W, Van der Voo R, Peacor DR, Beaubouef RT (1997) Alteration and dissolution of fine-grained magnetite and its effects on magnetization of the ocean floor. Earth Planet Sci Lett 151:279–288

    Article  Google Scholar 

  • Zhu R, Pan Y, Shaw J, Li D, Li Q (2001) Geomagnetic palaeointensity just prior to the cretaceous normal superchron. Phys Earth Planetary Inter 128:207–222

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. James Lau for his laboratory assistance and help with the laboratory measurements. We thank the two anonymous referees for their constructive criticism. We also give special thanks to the participating scientists and crew members of JOIDES Resolution for their help and support during the scientific cruises. This research used samples and data provided by the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP). Funding for this research was provided by the National Science Foundation (NSF) through its support of ODP, IODP, and the United States Science Support Program (USSSP) and through NSF grants JOI-T309A4, OCE-0727764, and EAR-IF-0710571 to Herrero-Bervera and grant OCE-0727576 to Acton. Additional financial support to E. H-B was provided by SOEST-HIGP. This is HIGP and SOEST contributions 1891 and 8148, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Herrero-Bervera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Herrero-Bervera, E., Acton, G. (2011). Absolute Paleointensities from an Intact Section of Oceanic Crust Cored at ODP/IODP Site 1256 in the Equatorial Pacific. In: Petrovský, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_13

Download citation

Publish with us

Policies and ethics