Applications of CERES

  • Matthias Baaz
  • Alexander Leitsch
Part of the Trends in Logic book series (TREN, volume 34)


CERES has applications to complexity theory, proof theory and to general mathematics. We first characterize classes of proofs which admit fast cut-elimination due to the resulting structure of the characteristic clause sets. Furthermore CERES can be applied to the efficient constructions of interpolants in classical logic and other logics for which CERES-methods can be defined. CERES is also suitable for calculating most general proofs from proof examples. Finally we demonstrate that CERES is also an efficient tool for the in-depth analysis of mathematical proofs.


Classical Logic Mathematical Proof Mathematical Argument Deductive Closure Resolution Refutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Aigner, G.M. Ziegler: Proofs from THE BOOK. Springer, Berlin, 1998.zbMATHGoogle Scholar
  2. 2.
    P.B. Andrews: Resolution in Type Theory. Journal of Symbolic Logic, 36, pp. 414–432, 1971.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 11.
    M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Cut-Elimination: Experiments with CERES. Proceedings of LPAR 2004, Lecture Notes in Computer Science 3452, pp. 481–495, 2005.Google Scholar
  4. 12.
    M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: Proof Transformation by CERES. In: J.M. Borwein, W.M. Farmer (eds.), MKM 2006, LNCS (LNAI), vol. 4108, pp. 82–93. Springer, Heidelberg, 2006.Google Scholar
  5. 13.
    M. Baaz, S. Hetzl, A. Leitsch, C. Richter, H. Spohr: CERES: An Analysis of Fürstenberg’s Proof of the Infinity of Primes. Theoretical Computer Science, 403 (2–3), pp. 160–175, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 17.
    M. Baaz, A. Leitsch: Cut Normal Forms and Proof Complexity. Annals of Pure and Applied Logic, 97, pp. 127–177, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 20.
    M. Baaz, A. Leitsch: Towards a Clausal Analysis of Cut-Elimination. Journal of Symbolic Computation, 41, pp. 381–410, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 23.
    M. Baaz, P. Pudlak: Kreisel’s Conjecture for LE1. In: P. Clote, J. Krajicek (eds.), Arithmetic Proof Theory and Computational Complexity, Oxford University Press, Oxford, pp. 30–49, 1993.Google Scholar
  9. 24.
    M. Baaz, P. Wojtylak: Generalizing Proofs in Monadic Languages. Annals of Pure and Applied Logic, 154(2): 71–138, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 27.
    E. Börger, E. Grädel, Y. Gurevich: The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, Berlin, 1997.Google Scholar
  11. 40.
    J.Y. Girard: Proof Theory and Logical Complexity. In Studies in Proof Theory, Bibliopolis, Napoli, 1987.Google Scholar
  12. 47.
    S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo: Herbrand Sequent Extraction. AISC/Calculemus/MKM 2008, LNAI 5144, pp. 462–477, 2008.Google Scholar
  13. 48.
    S. Hetzl, A. Leitsch, D. Weller, B. Woltzenlogel Paleo: Proof Analysis with HLK, CERES and ProofTool: Current Status and Future Directions. Proceedings of the CICM Workshop on Empirically Successful Automated Reasoning in Mathematics, CEUR Workshop Proceedings, vol 378, ISSN 1613-0073, 2008.Google Scholar
  14. 53.
    W.H. Joyner: Resolution Strategies as Decision Procedures. Journal of the ACM, 23(1), pp. 398–417, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 54.
    U. Kohlenbach: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. In Springer Monographs in Mathematics, Springer, Berlin, 2009.Google Scholar
  16. 55.
    C.J. Krajicek, P. Pudlak: The Number of Proof Lines and the Size of Proofs in First Order Logic. Archive for Mathematical Logic, 27, pp. 69–84, 1988.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 61.
    A. Leitsch: The Resolution Calculus. EATCS Texts in Theoretical Computer Science. Springer, Berlin, 1997.Google Scholar
  18. 63.
    H. Luckhardt: Herbrand-Analysen zweier Beweise des Satzes von Roth: polynomiale Anzahlschranken. Journal of Symbolic Logic, 54, pp. 234–263, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 65.
    G. Mints: Quick Cut-Elimination for Monotone Cuts. In Games, Logic, and Constructive Sets, The University of Chicago Press, Chicago, IL, 2003.Google Scholar
  20. 67.
    V.P. Orevkov: Lower Bounds for Increasing Complexity of Derivations after Cut Elimination. Journal of Soviet Mathematics, 20, pp. 2337–2350, 1982.zbMATHCrossRefGoogle Scholar
  21. 73.
    W.W. Tait: Normal Derivability in Classical Logic. In: J. Barwise (ed.), The Syntax and Semantics of Infinitary Languages, Springer, Berlin, pp. 204–236, 1968.CrossRefGoogle Scholar
  22. 74.
    G. Takeuti: Proof Theory. North-Holland, Amsterdam, 2nd edition, 1987.Google Scholar
  23. 78.
    C. Urban: Classical Logic and Computation. PhD Thesis, University of Cambridge Computer Laboratory, 2000.Google Scholar
  24. 79.
    B. Woltzenlogel Paleo: Herbrand Sequent Extraction. VDM Verlag Dr.Müller e.K., Saarbrücken, , ISBN-10: 3836461528, February 7, 2008.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations