Skip to main content

Spatial Resilience, Landscape Experiments, and Fragmentation

  • Chapter
  • First Online:
  • 2267 Accesses

Abstract

The majority of theoretical development and the testing of principles relating to the influence of spatial variation on processes in social-ecological systems has been either on paper or in silico (which is to say, through analytical mathematics and/or the use of computer-based models). This chapter provides a counterpoint to mathematical and model-oriented approaches by discussing rigorous empirical studies of spatial effects in ecosystems. Its primary goal is to offer an overview of the body of work in ecology that uses different forms of experimentation to test ideas about the relevance of space for resilience (as discussed in the previous four chapters). It also offers an introduction to a set of concepts that provide important background for Chapter 9.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amarasekare, P. (2000). Coexistence of competing parasitoids on a patchily distributed host: Local vs. spatial mechanisms. Ecology, 81, 1286–1296.

    Article  Google Scholar 

  • Belisle, M. (2005). Measuring landscape connectivity: The challenge of behavioral landscape ecology. Ecology, 86, 1988–1995.

    Article  Google Scholar 

  • Bernhardt, E. S., Likens, G. E. Hall, R. O. Buso, D. C. Fisher, S. G., & Burton, T. M. et al. (2005). Can’t see the forest for the stream? – In-stream processing and terrestrial nitrogen exports. Bioscience, 55, 219–230.

    Article  Google Scholar 

  • Cadotte, M. W., & Fukami, T. (2005). Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecology Letters, 8, 548–557.

    Article  PubMed  Google Scholar 

  • Carpenter, S. R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77, 677–680.

    Article  Google Scholar 

  • Carpenter, S. R. (2003). Regime shifts in lake ecosystems: Patterns and variation. In O. Kinne (Ed.), Excellence in ecology series (Vol. 15). Germany: Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Carpenter, S. R., Dahm, C. N. McKnight, D. M. Naiman, R. J. Postel, S. L., & Running, S.W. et al. (2001). Trophic cascades, nutrients, and lake productivity: Whole-lake experiments. Ecological Monographs, 71, 163–186.

    Article  Google Scholar 

  • Child, M. F., Cumming, G. S., & Amano, T. (2009). Assessing the broad-scale impact of agriculturally transformed and protected area landscapes on avian taxonomic and functional richness. Biological Conservation, 142, 2593–2601.

    Article  Google Scholar 

  • Cumming, D. H. M., Fenton, M. B., Rautenbach, I. L., Taylor, R. D., Cumming, G. S., & Cumming, M. S., et al. (1997). Elephants, woodlands and biodiversity in southern Africa. South African Journal of Science, 93, 231–236.

    Google Scholar 

  • Cumming, G. S., & Child, M. F. (2009). Contrasting spatial patterns of taxonomic and functional richness offer insights into potential loss of ecosystem services. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 1683–1692.

    Article  Google Scholar 

  • Debinski, D. M., & Holt, R. D. (2000). A survey and overview of habitat fragmentation experiments. Conservation Biology, 14, 342–355.

    Article  Google Scholar 

  • Dobson, A., Lodge, D., Alder, J., Cumming, G.S., Keymer, J., & Mcglade, J. et al. (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology, 87, 1915–1924.

    Article  PubMed  Google Scholar 

  • Fisher, R. A. (1926). The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain, 33, 503–513.

    Google Scholar 

  • Friedenberg, N. A. (2003). Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecology Letters, 6, 953–959.

    Article  Google Scholar 

  • Hellmann, J., Pelini, S. L., Prior, K. M., & Dzurisin, J. D. K. (2008). The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts. Oecologia, 157, 583–592.

    Article  PubMed  Google Scholar 

  • Holling, C. S. (Ed.). (1978). Adaptive environmental assessment and management. London: Wiley.

    Google Scholar 

  • Holling, C. S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs, 62, 447–502.

    Article  Google Scholar 

  • Holmgren, M., & Scheffer, M. (2001). El Niño as a window of opportunity for the restoration of degraded arid ecosystems. Ecosystems, 4, 151–159.

    Article  Google Scholar 

  • Holt, R. D., Robinson, G. R., & Gaines, M. S. (1995). Vegetation dynamics in an experimentally fragmented landscape. Ecology, 76, 1610–1624.

    Article  Google Scholar 

  • Houlahan, J. E., Currie D., Cottenie K., Ernest S., Findlay C., & Fuhldorf, S., et al. (2007). Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 104, 3273–3277.

    Article  PubMed  CAS  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Huston, M. A. (1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, 110, 449–460.

    Article  Google Scholar 

  • Jessup, C. M., Kassen, R., Forde, S.E., Kerr, B., Buckling, A., & Rainey, P.B., et al. (2004). Big questions, small worlds: Microbial model systems in ecology. Trends in Ecology and Evolution, 19, 189–197.

    Article  PubMed  Google Scholar 

  • Kneitel, J. M., & Chase, J. (2004). Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69–80.

    Article  Google Scholar 

  • Kuussaari, M., Bommarco, R. Heikkinen, R. K. Helm, A. Krauss, J., & Lindborg, R. et al. (2009). Extinction debt: A challenge for biodiversity conservation. Trends in Ecology & Evolution, 24, 564–571.

    Article  Google Scholar 

  • Likens, G. E. (2004). Some perspectives on long-term biogeochemical research from the Hubbard Brook ecosystem study. Ecology, 85, 2355–2362.

    Article  Google Scholar 

  • Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W., & Pierce, R. S. (1970). Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecological Monographs, 40, 23–47.

    Article  Google Scholar 

  • Likens, G. E., Bormann, F. H., Pierce, R. S., & Reiners, W. A. (1978). Recovery of a deforested ecosystem. Science, 199, 492–496.

    Article  PubMed  CAS  Google Scholar 

  • Lindenmayer, D. B., & Fischer, J. (2006). Habitat fragmentation and landscape change. Washington, DC: Island Press.

    Google Scholar 

  • Monserud, R. A. (2002). Large-scale management experiments in the moist maritime forests of the Pacific Northwest. Landscape and Urban Planning, 59, 159–180.

    Article  Google Scholar 

  • Prugh, L. R., Hodges, K. E., Sinclair, A. R. E., & Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences, 105, 20770–20775.

    Article  CAS  Google Scholar 

  • Richardson-Kageler, S. J. (2003). Large mammalian herbivores and woody plant species diversity in Zimbabwe. Biodiversity and Conservation, 12, 703–715.

    Article  Google Scholar 

  • Ripple, W. J., & Beschta, R. L. (2007). Hardwood tree decline following large carnivore loss on the Great Plains, USA. Frontiers in Ecology and the Environment, 5, 241–246.

    Article  Google Scholar 

  • Schindler, D. W., Hecky R. E. Findlay D. L. Stainton, M. P. Parker, B. R., & Paterson, M. J. et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences of the United States of America, 105, 11254–11258.

    Article  PubMed  CAS  Google Scholar 

  • Staver, A. C., Bond, W. J., Stock, W. D., van Rensburg, S. J., & Waldram, M. S. (2009). Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications, 19, 1909–1919.

    Article  PubMed  Google Scholar 

  • Suding, K. N., Collins, S. L. Gough, L. Clark, C. Cleland, E. E., & Gross, K. L. et al. (2005). Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences, 102, 4387–4392.

    Article  CAS  Google Scholar 

  • Terborgh, J., Lopez, L., Nuñez, P. Rao, M. Shahabuddin, G., & Orihuela, G. et al. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–1926.

    Article  PubMed  CAS  Google Scholar 

  • Terborgh, J., Lopez, L., & Tello, J. (1997). Bird communities in transition: The Lago Guri islands. Ecology, 78, 1494–1501.

    Article  Google Scholar 

  • Tilman, D. (1994). Competition and biodiversity in spatially structured habitats. Ecology, 75, 2–16.

    Article  Google Scholar 

  • Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455–1474.

    Google Scholar 

  • Tilman, D., Reich, P. B., & Knops, J. M. H. (1996). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 441, 629–632.

    Article  Google Scholar 

  • Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294, 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Todd, S. W., & Hoffman, M. T. (2009). A fence line in time demonstrates grazing-induced vegetation shifts and dynamics in the semiarid Succulent Karoo. Ecological Applications, 19, 1897–1908.

    Article  PubMed  Google Scholar 

  • Walters, C. (1997). Challenges in adaptive management of riparian and coastal ecosystems. Conservation Ecology, 1, 1 [online]. Available from, http://www.consecol.org/vol1/iss2/art1

  • Walters, C. J., & Holling, C. S. (1990). Large-scale management experiments and learning by doing. Ecology, 71, 2060–2068.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme S. Cumming .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cumming, G.S. (2011). Spatial Resilience, Landscape Experiments, and Fragmentation. In: Spatial Resilience in Social-Ecological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0307-0_8

Download citation

Publish with us

Policies and ethics