Skip to main content

Abstract

Air quality models simulate the atmospheric concentrations and deposition fluxes to the Earth’s surface of air pollutants by solving the mass conservation equations that represent the emissions, transport, dispersion, transformations and removal of those air pollutants and associated chemical species. Contemporary air quality models can be grouped into two major categories: (1) models that calculate the concentrations of air pollutants near a source (source-specific models) and (2) models that calculate concentrations of air pollutants over large areas ranging from an urban area, to a region, a continent and the globe (grid-based models). A few models combine both modeling approaches in a hybrid formulation. This chapter reviews the capabilities of current air quality models for estimating human exposure, ecological impact, risk assessment, and accountability. The chapter also discusses observations-based receptor models and their applications. The chapter summarizes the strengths and weaknesses of contemporary models in these application areas, and it provides recommendations for improving modeling capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source-specific models are Lagrangian models, which treat atmospheric dispersion as a source-specific process (i.e., the dispersion coefficients are a function of distance from the sources) whereas grid-based models are Eulerian models, which treat atmospheric dispersion as a characteristic of the ambient environment (i.e., dispersion coefficients are not related to any source characteristics). Source-specific Lagrangian models include steady-state Gaussian plume models such as AERMOD and non-steady-state puff dispersion models such as CALPUFF and SCICHEM.

  2. 2.

    Neighborhood scale calculations <1 km2 are much smaller than the resolution of grid-based models. Estimation of concentrations in this range require merging of plume models with the larger scale calculations.

  3. 3.

    The spatial resolution of the model output is typically coarser than the grid spacing because a grid model resolves horizontal features only at about four times the grid spacing.

References

  • Appel, K. W., Gilliland, A. B., Sarwar, G., & Gilliam, R. C. (2007). Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part I—ozone. Atmospheric Environment, 41, 8603–8615.

    Article  Google Scholar 

  • Appel, K. W., Bhave, P., Gilliland, A., Sarwar, G., & Roselle, S. (2008). Evaluation of the Community Multiscale Air Quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II—particulate matter. Atmospheric Environment, 42, 6057–6066.

    Article  CAS  Google Scholar 

  • Baldauf, R., Thoma, E., Isakov, V., Long, T., Weinstein, J., Gilmour, I., Cho, S., Khlystov, A., Chen, F., Kinsey, J., Hays, M., Seila, R., Snow, R., Shores, R., Olson, D., Gullett, B., Kimbrough, S., Watkins, N., Rowley, P., Bang, J., & Costa, D. (2008). Traffic and meteorological impacts on near road air quality: Summary of methods and trends from the Raleigh Near-Road Study. Journal of the Air and Waste Management Association, 58, 865–878.

    Article  CAS  Google Scholar 

  • Benson, P. E. (1992). A review of the development and application of the CALINE3 and 4 Models. Atmospheric Environment, 26, 379–390.

    Google Scholar 

  • Bergin, M. S., & Milford, J. (2000). Application of Bayesian Monte Carlo analysis to a Lagrangian photochemical air quality model. Atmospheric Environment, 34, 781–792.

    Article  CAS  Google Scholar 

  • Bergin, M.S., Noblet, G., Petrini, K., Dhieux, J., Milford, J., & Harley, R. (1999). Formal uncertainty analysis of a Lagrangian photochemical air pollution model. Environmental Science and Technology, 33, 1116–1126.

    Article  CAS  Google Scholar 

  • Bowker, G. E., Baldauf, R., Isakov, V., Khlystof, A., & Pettersen, W. (2007). The effect of roadside structures on the transport and dispersion of ultrafine particles from highways. Atmospheric Environment, 41, 8128–8139.

    Article  CAS  Google Scholar 

  • Box, G. E. P., & Wilson, K. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society B, 13, 1–45.

    Google Scholar 

  • Breivik, K., Alcock, R., Li, Y.-F., Bailey, R. E., Fiedler, H., & Pacyna, J. (2003). Primary sources of selected POPs: Regional and global scale emission inventories. Environmental Pollution, 128, 3–16.

    Article  Google Scholar 

  • Britter, R. E., & Hanna, S. (2003). Flow and dispersion in urban areas. Annual Reviews of Fluid Mechanics, 35, 469–496. doi:10.1146/annurev.fluid.35.101101.161147.

    Article  Google Scholar 

  • Bullock, O. R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A., Davignon, D., Ku, K., Lohman, K., Myers, T., Park, R., Seigneur, C., Selin, N., Sistla, G., & Vijayaraghavan, K. (2009). An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study. Journal of Geophysical Research, 114, D08301. doi:10.1029/2008JD011224.

    Google Scholar 

  • Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59, 51–77.

    Article  Google Scholar 

  • Chai, T., Carmichael, G., Sandu, A., Tang, Y., & Daescu, D. (2006). Chemical data assimilation with TRACE-P flight measurements. Journal of Geophysical Research, 111, D02301. doi:10.1029/2005JD005883.

    Google Scholar 

  • Chai, T., Carmichael, G., Tang, Y., Sandu, A., Hardesty, M., Pilewskie, P., Whitlow, S., Browell, E., Avery, M., Nédélec, P., Merrill, J., Thompson, A., & Williams, E. (2007). Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements. Journal of Geophysical Research, 112, D12S15. doi:10.1029/2006JD007763.

    Google Scholar 

  • Ching, J., Herwehe, J., & Swall, J. (2006). On joint deterministic grid modeling and sub-grid variability conceptual framework for model evaluation. Environmental Science and Technology, 40, 4935–4945.

    CAS  Google Scholar 

  • Cooter, E. J., & Hutzell, W. (2002). A regional atmospheric fate and transport model for atrazine: 1. Development and implementation. Environmental Science and Technology, 36, 4091–4098.

    Article  CAS  Google Scholar 

  • Cooter, E. J., Hutzell, W. T., Foreman, W., & Majewski, M. (2002). A regional atmospheric fate and transport model for atrazine: 2. Evaluation. Environmental Science and Technology, 36, 4593–4599.

    Article  CAS  Google Scholar 

  • Davis, J. M., Bhave, P., & Foley, K. (2007). Parameterization of N2O5 reaction probabilities on the surface of particles containing ammonium, sulfate and nitrate. Atmospheric Chemistry and Physics Discussions, 7, 16119–16153.

    Article  Google Scholar 

  • Dennis, R. L., Barchet, W., Clark, T., & Seilkop, S. (1990). Evaluation of regional acidic deposition models. Report 5. Acidic deposition: State of science and techonology, Volume 1: Emissions, atmospheric processes, and deposition. National Acid Precipitation Assessment Program, Washington, DC.

    Google Scholar 

  • Eder, B., & Yu, S.-K. (2006). A performance evaluation of the 2004 release of Models-3 CMAQ. Atmospheric Environment, 40, 4811–4824.

    Article  CAS  Google Scholar 

  • Elliott, E. M., Kendall, C., Wankel, S., Burns, D., Boyer, E., Harlin, K., Bain, D., & Butler, T. (2007). Nitrogen isotopes as indicators of NOX source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States. Environmental Science and Technology, 41(22), 7661–7667. doi:10.1021/es070898t.

    Article  CAS  Google Scholar 

  • Engel-Cox, J. A., & Weber, S. A. (2007). Compilation and assessment of recent positive matrix factorization and UNMIX receptor model studies on fine particulate matter source apportionment for the eastern United States. Journal of the Air and Waste Management Association, 57(11), 1307–1316.

    Article  CAS  Google Scholar 

  • Franklin, J., Atkinson, R., Howard, P., Orlando, J., Seigneur, C., Wallington, T., & Zetzsch, C. (2000). Chapter 2, Quantitative determination of persistence in air. In G. Klecka et al. (Eds.), Persistence and long-range transport of organic chemicals in the environment. Pensacola: Society for Environmental Toxicology and Chemistry.

    Google Scholar 

  • Fuentes, M., & Raftery, A. (2005). Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics, 61, 36–45.

    Article  Google Scholar 

  • Gilliland, A. B, Appel, K., Pinder, R., & Dennis, R. (2006). Seasonal NH3 emissions for the continental united states: Inverse model estimation and evaluation. Atmospheric Environment, 40, 4986–4998.

    Article  CAS  Google Scholar 

  • Gilliland, A. B., Hogrefe, C., Pinder, R., Godowitch, J., & Rao, S. T. (2008). Dynamic evaluation of regional air quality models: Assessing changes in ozone stemming from changes in emissions and meteorology. Atmospheric Environment, 42, 5110–5123.

    Article  CAS  Google Scholar 

  • Godowitch, J. M., Gilliland, A. B., Draxler, R. R., & Rao, S. T. (2008). Modeling assessment of point source NOX emission reductions on ozone air quality in the eastern United States. Atmospheric Environment, 42, 87–100.

    Article  CAS  Google Scholar 

  • Gong, W., Dastoor, A., Bouchet, V., Gong, S., Makar, P., Moran, M., Pabla, B., Ménard, S., Crevier, L.-P., Cousineau, S., & Venkatesh, S. (2006). Cloud processing of gases and aerosols in a regional air quality model (AURAMS). Atmospheric Research, 82, 248–275.

    Article  CAS  Google Scholar 

  • Grell, G. A., Emeis, S., Stockwell, W., Schoenemeyer, T., Forkel, R., Michalakes, J., Knoche, R., & Seidl, W. (2000). Application of a multiscale, coupled MM5/chemistry model to the complex terrain of the VOTALP valley campaign. Atmospheric Environment, 34, 1435–1453.

    Article  CAS  Google Scholar 

  • Grell, G. A., Peckham, S., Schmitz, R., McKeen, S., Frost, S., Skamarock, W., & Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39, 6957–6975.

    Article  CAS  Google Scholar 

  • Hanna, S. R., & Davis, J. (2002). Evaluation of a photochemical grid model using estimates of concentration probability density functions. Atmospheric Environment, 36, 1793–1798.

    Article  CAS  Google Scholar 

  • Hanna, S. R., Lu, Z., Frey, C., Wheeler, N., Vikovich, J., Arunachalam, S., Fernau, M., & Hansen, D. A. (2001). Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmospheric Environment, 35, 891–903.

    Article  CAS  Google Scholar 

  • Hanna, S. R., Paine, R., Heinold, D., Kintigh, E., & Baker, D. (2007). Uncertainties in air toxics calculated by the dispersion models AERMOD and ISCST3 in the Houston ship channel area. Journal of Applied Meteorology and Climate, 46, 1372–1382.

    Article  Google Scholar 

  • Hopke, P. K. (1985). Receptor modeling in environmental chemistry. New York: Wiley.

    Google Scholar 

  • Isakov, V., & Ozkaynak, H. (2007). A modeling methodology to support evaluation of public health impacts of air pollution reduction programs. 29 th NATO/SPS International Technical Meeting on Air Pollution Modeling and its Application, 24–28 September, Aveiro, Portugal.

    Google Scholar 

  • Isakov, V., & Venkatram, A. (2006). Resolving neighborhood scale in air toxics modeling: A case study in Wilmington, CA. Journal of the Air and Waste Management Association, 56, 559–568.

    Article  CAS  Google Scholar 

  • Jazcilevich, A. D., Garcia, A., & Ruiz-Suarez, L.-G. (2003). An air pollution modeling study using three surface coverings near the new international airport for Mexico City. Journal of the Air and Waste Management Association, 53, 1280–1287.

    Article  CAS  Google Scholar 

  • Jazcilevich, A. D., Garcia, A., & Caetano, E. (2005). Locally induced surface air confluence by complex terrain and its effects on air pollution in the Valley of Mexico. Atmospheric Environment, 39, 5481–5489.

    Article  CAS  Google Scholar 

  • Jerrett, M., Bennett, R., Ma, C. R., Pope, C. A., III, Krewksi, D., Newbold, K., Thurston, G., Shi, Y., Finklestein, N., Calle, E., & Thun, M. (2005). Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology, 16, 727–736.

    Article  Google Scholar 

  • Karamchandani, P., Lohman, K., & Seigneur, C. (2007). Sub-grid scale modeling of air toxics concentrations near roadways. CMAS Annual Conference, 1–3 October, Chapel Hill, NC.

    Google Scholar 

  • Kastner-Klein, P., Berkowicz, R., & Britter, R. (2004). The influence of street architecture on flow and dispersion in street canyons. Meteorology and Atmospheric Physics, 87, 121–131.

    Article  Google Scholar 

  • Keeler, G. J., Landis, M., Norris, G., Christianson, E., & Dvonch, J. (2006). Sources of mercury wet deposition in eastern Ohio, USA. Environmental Science and Technology, 40, 5874–5881.

    Article  CAS  Google Scholar 

  • Lee, S., Liu, W., Wang, Y., Russell, A., & Edgerton, E. (2008). Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 42, 4126–4137.

    CAS  Google Scholar 

  • Lei, W., de Foy, B., Zavala, M., Volkamer, R., & Molina, L. T. (2007). Characterizing ozone production in the Mexico City metropolitan area: A case study using a chemical transport model. Atmospheric Chemistry and Physics, 7, 1347–1366.

    Article  CAS  Google Scholar 

  • Lin, C. J. (2004). The chemical transformations of chromium in natural waters—a model study. Water Air and Soil Pollution, 139, 137–158.

    Article  Google Scholar 

  • Lin, C. J., Lindberg, S., Ho, T., & Jang, C. (2005). Development of a processor in BEIS3 for estimating vegetative mercury emission in the continental United States. Atmospheric Environment, 39, 7529–7540.

    Article  CAS  Google Scholar 

  • Lindberg, S. E., & Stratton, W. (1998). Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science and Technology, 32, 49–57.

    Article  CAS  Google Scholar 

  • Lohman, K., Pai, P., Seigneur, C., Mitchell, D., Heim, K., Wandland, K., & Levin, L. (2000). A probabilistic analysis of regional mercury impacts on wildlife. Human Ecological Risk Assessessment, 6, 103–130.

    Article  CAS  Google Scholar 

  • Lohman, K., Seigneur, C., Gustin, M., & Lindberg, S. (2008). Sensitivity of the global atmospheric cycling of mercury to emissions. Applied Geochemistry, 23, 454–468.

    Article  CAS  Google Scholar 

  • Luecken, D. J., Hutzell, W., & Gipson, G. (2006). Development and analysis of air quality modeling simulations for hazardous air pollutants. Atmospheric Environment, 40, 5087–5096.

    Article  CAS  Google Scholar 

  • Lyman, S. N., Gustin, M., Prestbo, E., & Marsik, F. (2007). Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods. Environmental Science and Technology, 41, 1970–1976.

    Article  CAS  Google Scholar 

  • Marmur, A., Park, S.-K., Mulholland, J.,Tolbert, P., & Russell, A. (2006). Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: Conceptual differences and implications for time-series health studies. Atmospheric Environment, 40, 2533–2551.

    Article  CAS  Google Scholar 

  • Martien, P. T., Harley, R., Milford, J., & Russell, A. (2003). Evaluation of incremental reactivity and its uncertainty in southern California. Environmental Science and Technology, 37, 1598–1608.

    Article  CAS  Google Scholar 

  • MATES-II. (2000). The Multiple Air Toxics Exposure Study, South Coast Air Quality Management District, Diamond Bar, CA. http://www.aqmd.gov/matesiidf/matestoc.htm.

  • Mathur, R., & Dennis, R. (2003). Seasonal and annual modeling of reduced nitrogen compounds over the eastern United States: Emissions, ambient levels, and deposition amounts. Journal of Geophysical Research, 108, 4481. doi:10.1029/2002/JD002794, ACH 22- 1-15.

    Google Scholar 

  • McKeen, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Hsie, E.-Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y., Carmichael, G., Pagowski, M., Chan, A., & Dye, T. (2005). Assessment of an ensemble of several real-time ozone forecasts over eastern North America during the summer of 2004. Journal of Geophysical Research, 110, D21307. doi:10.1029/2005JD005858.

    Google Scholar 

  • McKeen, S., Chung, S., Wilczak, J., Grell, G., Djalalova, I., Peckham, S., Gong, W., Bouchet, V., Moffet, R., Tang, Y., Carmichael, G., Mathur, R., & Yu, S. (2007). Evaluation of several real-time PM2.5 forecast modeling using data collected during the ICARTT/NEAQS 2004 field study. Journal of Geophysical Research, 112, D10S20. doi:10.1029/2006JD007608, 20pp.

    Google Scholar 

  • McMurry, P., Shepherd, M., & Vickery, J. (Eds.). (2004). Particulate matter science for policy makers: A NARSTO assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moran, M. D., Zhang, Q., Pavlovic, R., Cousineau, S., Bouchet, V., Sassi, V., Makar, P., Gong, W., & Stroud, C. (2008). Predicted acid deposition critical-load exceedances across Canada from a one-year simulation with a regional particulate-matter model. Proc. 15 th Joint American Meteorological Society/Air & Waste Management Association Conference on Application of Air Pollution Meteorology, 21–24 January, New Orleans, LA; American Meteorological Society, Boston, MA. http://ams.confex.com/ams/pdfpapers/132916.pdf.

  • Mugica, V., Watson, J., Vega, E., Reyes, E., Ruiz, M. E., & Chow, J. (2002). Receptor model source apportionment of nonmethane hydrocarbons in Mexico city. The Scientific World Journal, 2, 844–860.

    Article  CAS  Google Scholar 

  • NARSTO. (2000). An assessment of tropospheric ozone pollution: A North American perspective. NARSTO, Pasco, WA (www.narsto.org); see also Atmospheric Environment, 32(12–14), 2000.

  • NARSTO. (2005). Improving emission inventories for effective air quality management across North America. Report 05-0001, NARSTO, Pasco, WA.

    Google Scholar 

  • National Research Council (NRC). (1994). Science and judgment in risk assessment. Washington: National Academies Press.

    Google Scholar 

  • Otte, T., Lacser, A., Dupont, S., & Ching, J. (2004). Implementation of an urban canopy parameterization in a mesoscale meteorological model. Journal of Applied Meteorology, 43, 1648–1665.

    Article  Google Scholar 

  • Park, S. H., Gong, S., Zhao, T., Vet, R., Bouchet, V., Gong, W., Makar, P., Moran, M., Stroud, C., & Zhang, J. (2007). Simulation of entrainment and transport of dust particles within North America in April 2001 (“Red Dust Episode”). Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443.

    Google Scholar 

  • Perry, S. G., Cimorelli, A., Paine, R., Brode, R., Weil, J., Venkatram, A., Wilson, R., Lee R., & Peters, W. (2005). AERMOD: A dispersion model for industrial source applications. Part II: Model performance against 17 field study databases. Journal of Applied Meteorology, 44, 694–708.

    Article  Google Scholar 

  • Phillips, S., Hubbell, B., Jang, C., Dolwick, P., Possiel, N., & Fox, T. (2006). CMAQ multipollutant response surface modeling: Applications of an innovative policy support tool. Chapel Hill: CMAS Annual Conference.

    Google Scholar 

  • Pinder, R. W., Dennis, R., & Bhave, P. (2008). Observable indicators of the sensitivity of PM2.5 nitrate to emission reductions, Part I: Derivation of the adjusted gas ratio and applicability at regulatory-relevant time scales. Atmospheric Environment, 42, 1275–1286.

    Article  CAS  Google Scholar 

  • Pratt, G. C., Wu, C., Bock, D., Adgate, J., Ramachandran, G., Stock, T., Morandi, M., & Sexton, K. (2004). Comparing air dispersion model predictions with measured concentrations of VOCs in urban communities. Environmental Science Technology, 38, 1949–1959.

    Article  CAS  Google Scholar 

  • Pun, B., Seigneur, C., Bailey, E., Gautney, L., Douglas, S., Haney, J., & Kumar, N. (2007). Response of atmospheric particulate matter to changes in precursor emissions: A comparison of three air quality models. Environmental Science Technology, 42, 831–837.

    Article  Google Scholar 

  • Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air and Waste Management Association, 57(2), 146–154.

    Article  CAS  Google Scholar 

  • Russell, A., & Dennis, R. (2000). NARSTO critical review of photochemical models and modeling. Atmospheric Environment, 34, 2283–2324.

    Article  CAS  Google Scholar 

  • Russell, A. G. (2008). EPA supersites program-related emissions-based particulate matter modeling: Initial applications and advances. Journal of the Air and Waste Management Association, 58, 289–302.

    Article  CAS  Google Scholar 

  • Sax, T., & Isakov, V. (2003). A case study for assessing uncertainty in local-scale regulatory air quality modeling applications. Atmospheric Environment, 37, 3481–3489.

    Article  CAS  Google Scholar 

  • Schichtel, B., et al. (2005). Reconciliation and interpretation of Big Bend National Park particulate sulfur source apportionment: Results from the Big Bend Regional Aerosol and Visibility Observational study-Part I. Journal of the Air and Waste Management Association, 55, 1709–1725.

    Article  CAS  Google Scholar 

  • Seigneur, C. (2001). Current status of air quality models for particulate matter. Journal of the Air & Waste Management Association, 51, 1508–1521.

    Article  CAS  Google Scholar 

  • Seigneur, C. (2005). Air pollution: Current challenges and future opportunities. American Institute of Chemical Engineers Journal, 51, 355–363.

    Article  Google Scholar 

  • Seigneur, C., & Constantinou, E. (1995). Chemical kinetic mechanism for atmospheric chromium. Environmental Science Technology, 29, 222–231.

    Article  CAS  Google Scholar 

  • Seigneur, C., Lohman, K., Pai, P., Heim, K., Mitchell, D., & Levin, L. (1999). Uncertainty analysis of regional mercury exposure. Water Air and Soil Pollution, 112, 151–162.

    Article  CAS  Google Scholar 

  • Seigneur, C., Pun, B., Lohman, K., & Wu, S.-Y. (2003). Regional modeling of the atmospheric fate and transport of benzene and diesel particles. Environmental Science and Technology, 37, 5236–5246.

    Article  CAS  Google Scholar 

  • Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., & Scott, C. (2004). Global source attribution for mercury deposition in the United States. Environmental Science Technology, 38, 555–569.

    Article  CAS  Google Scholar 

  • Selin, N., Jacob, D., Park, R., Yamoca, M., Strode, S., Jaeglé, L., & Jaffe, D. (2007). Chemical cycling and deposition of atmospheric mercury global constraints from observations. Journal of Geophysical Research, 112, D02308. doi:10.1029/2006JD007450.

    Google Scholar 

  • Tarasick, D. W., Moran, M., & Thompson, A., et al. (2007). Comparison of Canadian air quality forecast models with tropospheric ozone profile measurements above midlatitude North America during the IONS/ICARTT campaign: Evidence for stratospheric input. Journal of Geophysical Research, 112, D12S22. doi:10.1029/2006JD007782.

    Google Scholar 

  • Tesche, T. W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., & Brewer, P. (2006). CMAQ/CAMx annual 2002 performance evaluation over the eastern U.S. Atmospheric Environment, 40, 4906–4919.

    CAS  Google Scholar 

  • Thoma, E. D., Shores, R., Isakov, V., & Baldauf, R. (2008). Characterization of near-road pollutant gradients using path-integrated optical remote sensing. Journal of the Air and Waste Management Association, 58, 879–890.

    Article  CAS  Google Scholar 

  • Tie, X. X., Madronich, S., Li, G. H., Ying, Z. M., Zhang, R. Y., Garcia, A. R., Lee-Taylor, J., & Liu, Y. B. (2007). Characterizations of chemical oxidants in Mexico City: A regional chemical dynamical model (WRF-Chem) study. Atmospheric Environment, 41, 1989–2008.

    Article  CAS  Google Scholar 

  • Touma, J. S., Isakov, V., Ching, J., & Seigneur, C. (2006). Air quality modeling of hazardous pollutants: Current status and future directions. Journal of the Air and Waste Management Association, 56, 547–558.

    Article  CAS  Google Scholar 

  • Vega, E., Mugica, V., Carmona, R., & Valencia, E. (2000). Hydrocarbon source apportionment in Mexico City using the chemical mass balance receptor model. Atmospheric Environment, 34, 4121–4129.

    Article  CAS  Google Scholar 

  • Venkatram, A., Isakov, V., Thoma, E., & Baldauf, R. (2007). Analysis of air quality data near roadways using a dispersion model. Atmospheric Environment, 41, 9481–9497.

    Article  CAS  Google Scholar 

  • Watson, J. G., Chen, L.-W. A., Chow, J. C., Lowenthal, D. H., & Doraiswamy, P. (2008). Source apportionment: Findings from the U.S. Supersite Program. Journal of the Air and Waste Management Association, 58(2), 265–288.

    Article  CAS  Google Scholar 

  • Wöhrnschimmel, H., Márquez, C., Mugíca, V., Stahel, W. A., Staehelin, J., Cárdenas, B., & Blanco, S. (2006). Vertical profiles and receptor modeling of volatile organic compounds over southeastern Mexico city. Atmospheric Environment, 40, 5125–5136.

    Article  Google Scholar 

  • Yarwood, G., Stoeckenius, T., Heiken, J., & Dunker, A. (2003). Modeling weekday/weekend ozone differences in the Los Angeles region for 1997. Journal of the Air and Waste Management Association, 53, 864–875.

    Article  CAS  Google Scholar 

  • Yu, S., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., & Robarge, W. (2005). An assessment of the ability of three-dimensional air quality models with current thermodynamic equilibrium models to predict aerosol NO3 . Journal of Geophysical Research, 110, D07S13. doi:10.1029/2004JD004718.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the following contributing authors: Agustin Garcia, Aron Jazcilevich, Michael Moran. Although this chapter has been subjected to the U.S. Environmental Protection Agency review and approved for publication, it does not necessarily reflect the views and policies of the Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Dennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Seigneur, C., Dennis, R. (2011). Atmospheric Modeling. In: Hidy, G., Brook, J., Demerjian, K., Molina, L., Pennell, W., Scheffe, R. (eds) Technical Challenges of Multipollutant Air Quality Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0304-9_9

Download citation

Publish with us

Policies and ethics