Skip to main content

MicroRNAs in Breast Cancer

  • Chapter
  • First Online:
MicroRNAs in Cancer Translational Research
  • 869 Accesses

Abstract

Breast cancer is a complex, phenotypically diverse genetic disease, which involves changes in gene expression and structure. Despite advances in the detection and therapy of breast cancer, it is the leading cause of cancer deaths among women worldwide. Therefore, novel diagnostic and prognostic indicators, as well as potential therapeutic targets are needed. Recently, several studies have shown an involvement for the microRNAs (miRNAs) in breast cancer. MiRNA expression profiling studies have identified sets of miRNAs which are deregulated in breast cancer, and which can separate tumor from normal tissue. Functional studies have uncovered the role of miRNAs in breast cancer as both tumor suppressors and oncogenes. Furthermore, miRNAs have been suggested to play a critical role in regulating breast cancer metastasis. The purpose of this chapter is to present an overview of our current understanding of miRNAs in breast cancer with specific emphasis on miRNAs as potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERa) and represses ERa messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21:1132–47.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007;19:61–4.

    PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  Google Scholar 

  • Baranwal S, Alahari SK. Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun. 2009;384:6–11.

    Article  CAS  PubMed  Google Scholar 

  • Bhat-Nakshatri P, Wang G, Collins NR, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009;37:4850–61.

    Article  CAS  PubMed  Google Scholar 

  • Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.

    Article  PubMed  Google Scholar 

  • Brosh R, Shalgi R, Liran A, et al. p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol. 2008;4:229.

    Article  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101:2999–3004.

    Article  CAS  PubMed  Google Scholar 

  • Castellano L, Giamas G, Jacob J, et al. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA. 2009;106:15732–7.

    Article  CAS  PubMed  Google Scholar 

  • Cheskis BJ, Greger JG, Nagpal S, et al. Signaling by estrogens. J Cell Physiol. 2007;213:610–7.

    Article  CAS  PubMed  Google Scholar 

  • Cicatiello L, Mutarelli M, Grober OM, et al. Estrogen receptor α controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and MicroRNAs. Am J Pathol. 2010;176:2113–30.

    Article  CAS  PubMed  Google Scholar 

  • Di Leva G, Gasparini P, Piovan C, et al. MicroRNA cluster 221-222 and Estrogen receptor α interactions in breast cancer. J Natl Cancer Inst. 2010;102:706–21.

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005;102:3627–32.

    Article  CAS  PubMed  Google Scholar 

  • Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    Article  CAS  PubMed  Google Scholar 

  • Foekens JA, Sieuwerts AM, Smid M, et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA. 2008;105:13021–6.

    Article  CAS  PubMed  Google Scholar 

  • Fowler AM, Solodin NM, Valley CC, et al. Altered target gene regulation controlled by estrogen receptor-alpha concentration. Mol Endocrinol. 2006;20:291–301.

    Article  CAS  PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, et al. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    Article  CAS  PubMed  Google Scholar 

  • Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 2009;6:63–6.

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  • Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284:23204–16.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt SC, Korach KS. Oestrogen receptor knockout mice: roles for oestrogen receptors a and b in reproductive tissues. Reproduction. 2003;125:143–9.

    Article  CAS  PubMed  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF. MiR-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26:8191–201.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.

    Article  CAS  PubMed  Google Scholar 

  • Huang TH, Wu F, Loeb GB, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem. 2009;284:18515–24.

    Article  CAS  PubMed  Google Scholar 

  • Hurteau GJ, Carlson JA, Roos E, et al. Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression. Cell Cycle. 2009;8:2064–9.

    Article  CAS  PubMed  Google Scholar 

  • Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21:177–84.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Casalini P, Piovan C, et al. MicroRNA-205 regulates HER3 in human breast cancer. Cancer Res. 2009;69:2195–200.

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang HW, Lu MH, et al. MicroRNA-155 functions as an oncomir in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119–27.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.

    Article  CAS  PubMed  Google Scholar 

  • Juliano R, Alam MR, Dixit V, et al. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 2008;36:4158–71.

    Article  CAS  PubMed  Google Scholar 

  • Junttila MR, Evan GI. p53–a Jack of all trades but master of none. Nat Rev Cancer. 2009;9:821–9.

    CAS  PubMed  Google Scholar 

  • Kondo N, Toyama T, Sugiura H, et al. MiR-206 expression is down-regulated in estrogen receptor a-positive human breast cancer. Cancer Res. 2008;68:5004–8.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, He L, Coppola M, et al. MicroRNA-155 regulates cell survival, growth and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 2010;285:17869–79.

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28:6773–84.

    Article  CAS  PubMed  Google Scholar 

  • Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.

    Article  CAS  PubMed  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007;21:1025–30.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol. 2008;214:17–24.

    Article  CAS  PubMed  Google Scholar 

  • Leivonen S-K, Mäkelä R, Östling P, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 2009;28:3926–36.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Mertens-Talcott SU, Zhang S, et al. MicroRNA-27a indirectly regulates estrogen receptor α expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology. 2010;151:2462–73.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yan P, Shao, Z. Downregulation of miR-193b contributes to enhance urokinase-type plasminogen activator (uPA) expression and tumor progression and invasion in human breast cancer. Oncogene. 2009;28:3937–48.

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun. 2007;363:542–6.

    Article  CAS  PubMed  Google Scholar 

  • Lowery AJ, Miller N, Devaney A, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27.

    Article  PubMed  Google Scholar 

  • Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010a;28:341–7.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010b;12:247–56.

    CAS  PubMed  Google Scholar 

  • Maillot G, Lacroix-Triki M, Pierredon S, et al. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res. 2009;69:8332–40.

    Article  CAS  PubMed  Google Scholar 

  • Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer. 2006;5:24.

    Article  PubMed  Google Scholar 

  • McLaughlin J, Cheng D, Singer O, et al. Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc Natl Acad Sci USA. 2007;104:20501–6.

    Article  CAS  PubMed  Google Scholar 

  • Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133:217–22.

    Article  CAS  PubMed  Google Scholar 

  • Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007;67:11001–11.

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Ghoshal K, Ramaswamy B, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283:29897–903.

    Article  CAS  PubMed  Google Scholar 

  • Moriarty CH, Pursell B, Mercurio AM. miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem. 2010;285:20541–6.

    Article  CAS  PubMed  Google Scholar 

  • Negrini M, Rasio D, Hampton GM, et al. Definition and refinement of chromosome 11 regions of loss of heterozygosity in breast cancer: identification of a new region at 11q23.3. Cancer Res. 1995;55:3003–7.

    CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  Google Scholar 

  • Park SM, Shell S, Radjabi AR, et al. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle. 2007;6:2585–90.

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70:378–87.

    Article  CAS  PubMed  Google Scholar 

  • Scott GK, Goga A, Bhaumik D, et al. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA miR-125a or miR-125b. J Biol Chem. 2007;282:1479–86.

    Article  CAS  PubMed  Google Scholar 

  • Sempere LF, Christensen M, Silahtaroglu A, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67:11612–20.

    Article  CAS  PubMed  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.

    Article  CAS  PubMed  Google Scholar 

  • Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene. 2007;26:2799–803.

    Article  CAS  PubMed  Google Scholar 

  • Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40:2667–75.

    Article  PubMed  Google Scholar 

  • Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  PubMed  Google Scholar 

  • Spizzo R, Nicoloso MS, Lupini L, et al. miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor-alpha in human breast cancer cells. Cell Death Differ. 2010;17:246–54.

    Article  CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.

    Article  CAS  PubMed  Google Scholar 

  • Tryndyak VP, Beland FA, Pogribny IP. E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer. 2010;126:2575–83.

    CAS  PubMed  Google Scholar 

  • Tsang JS, Ebert MS, van Oudenaarden A. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell. 2010;38:140–53.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Benaich N, Chang A, et al. Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes Dev. 2009a;23:2592–7.

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009b;137:1032–46.

    Article  CAS  PubMed  Google Scholar 

  • Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103:2257–61.

    Article  CAS  PubMed  Google Scholar 

  • Yamagata K, Fujiyama S, Ito S, et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell. 2009;36:340–7.

    Article  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Schlehe B, Hemminki K, et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res Treat. 2010;121:693–702.

    Article  PubMed  Google Scholar 

  • Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 2008;182:509–17.

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006;103:9136–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates ERa and associates with tamoxifen resistance in breast cancer. J Biol Chem. 2008;283:31079–86.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Si ML, Wu H, et al. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282:14328–36.

    Article  CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18:350–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi-Katri Leivonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Leivonen, SK. (2011). MicroRNAs in Breast Cancer. In: Cho, W. (eds) MicroRNAs in Cancer Translational Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0298-1_3

Download citation

Publish with us

Policies and ethics