Skip to main content

Tumor Dormancy in Liver Metastasis: Clinical and Experimental Evidence and Implications for Treatment

  • Chapter
  • First Online:

Part of the book series: Cancer Metastasis - Biology and Treatment ((CMBT,volume 16))

Abstract

Cancer, and more specifically metastatic cancer, continues to be a leading cause of death worldwide. One of the most common organs in which metastatic cancer is diagnosed, and where it is often fatal, is the liver. This is not surprising given the large volume of nutrient-rich blood filtered through the fenestrated sinusoids of the liver. And while progress has been made in our understanding and treatment of metastatic disease, the majority of treatments are still ultimately unsuccessful in the metastatic setting. In the case of liver metastasis, even after apparently successful initial treatment, 5 year survival remains relatively low. Yet, although metastatic disease is associated with poor prognosis, the process of metastasis itself is known to be highly inefficient. The reasons for this inefficiency and the failure of cancer cells to form large vascularised metastases are, at least initially, twofold – cell death and dormancy. Dormant solitary metastatic cells and micrometastases have been proposed to be responsible, at least in part, for treatment failure and recurrence months to decades following initial treatment. Here we review experimental and clinical evidence regarding metastatic dormancy and discuss the implications of dormant cell populations for treatment of metastatic disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CDK:

cyclin dependent kinase

CDKI:

cyclin dependent kinase inhibitor

CMF:

cyclophosphamide, methotrexate, fluorouracil

CSCs:

cancer stem cells

CTCs:

circulating tumor cells

DTCs:

disseminated tumor cells

FAK:

focal adhesion kinase

MLCK:

myosin light chain kinase

MRI:

magnetic resonance imaging

uPAR:

urokinase plasminogen activator receptor

References

  1. Canadian Cancer Society. Canadian Cancer Statistics 2009

    Google Scholar 

  2. American Cancer Society (2009) Cancer facts & figures 2009. American Cancer Society, Atlanta

    Google Scholar 

  3. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–72

    PubMed  CAS  Google Scholar 

  4. Ambrus JL, Ambrus CM, Mink IB, Pickren JW (1975) Causes of death in cancer patients. J Med 6:61–64

    PubMed  CAS  Google Scholar 

  5. Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VHC, Groom AC et al (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82:199–206

    PubMed  CAS  Google Scholar 

  6. Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM et al (2002) Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res 62:2162–2168

    PubMed  CAS  Google Scholar 

  7. Weiss L (2000) Metastasis of cancer: a conceptual history from antiquity to the 1990s. Cancer Metastasis Rev 19:I–XI, 193–383

    Google Scholar 

  8. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC et al (2000) Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res 60:2541–2546

    PubMed  CAS  Google Scholar 

  9. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    PubMed  CAS  Google Scholar 

  10. Weiss L (1996) Metastatic inefficiency: intravascular and intraperitoneal implantation of cancer cells. Cancer Treat Res 82:1–11

    PubMed  CAS  Google Scholar 

  11. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44:3584–3592

    PubMed  CAS  Google Scholar 

  12. Shapiro EM, Sharer K, Skrtic S, Koretsky AP (2006) In vivo detection of single cells by MRI. Magn Reson Med 55:242–249

    PubMed  Google Scholar 

  13. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    PubMed  Google Scholar 

  14. Goodison S, Kawai K, Hihara J, Jiang P, Yang M, Urquidi V et al (2003) Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin Cancer Res 9:3808–3814

    PubMed  CAS  Google Scholar 

  15. Guba M, Cernaianu G, Koehl G, Geissler EK, Jauch KW, Anthuber M et al (2001) A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res 61:5575–5579

    PubMed  CAS  Google Scholar 

  16. Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M et al (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55:2520–2523

    PubMed  CAS  Google Scholar 

  17. Naumov GN, Folkman J, Straume O, Akslen LA (2008) Tumor-vascular interactions and tumor dormancy. APMIS 116:569–585

    PubMed  CAS  Google Scholar 

  18. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    PubMed  CAS  Google Scholar 

  19. Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5:1744–1750

    PubMed  CAS  Google Scholar 

  20. Naumov GN, MacDonald IC, Chambers AF, Groom AC (2001) Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol 11:271–276

    PubMed  CAS  Google Scholar 

  21. Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G (1996) Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 41:177–185

    PubMed  CAS  Google Scholar 

  22. Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G (1994) Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 86:45–48

    PubMed  CAS  Google Scholar 

  23. Pickren J, Tsukada Y, Lane W (1982) Liver metastasis. In: Weiss L, Gilbert L (eds) Liver Metastasis. G.K. Hall Medical Publishers, Boston, MA

    Google Scholar 

  24. Butler TP, Gullino PM (1975) Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 35:512–516

    PubMed  CAS  Google Scholar 

  25. Diamond JR, Finlayson CA, Borges VF (2009) Hepatic complications of breast cancer. Lancet Oncol 10:615–621

    PubMed  Google Scholar 

  26. Bakalian S, Marshall J, Logan P, Faingold D, Maloney S, Di Cesare S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14:951–956

    PubMed  CAS  Google Scholar 

  27. Logan PT, Fernandes BF, Di Cesare S, Marshall JA, Maloney SC, Burnier MNJ (2008) Single-cell tumor dormancy model of uveal melanoma. Clin Exp Metastasis 25:509–516

    PubMed  Google Scholar 

  28. Sharma S, Camci C, Jabbour N (2008) Management of hepatic metastasis from colorectal cancers: an update. J Hepatobiliary Pancreat Surg 15:570–580

    PubMed  Google Scholar 

  29. Goss P, Allan AL, Rodenhiser DI, Foster PJ, Chambers AF (2008) New clinical and experimental approaches for studying tumor dormancy: does tumor dormancy offer a therapeutic target?. APMIS 116:552–568

    PubMed  CAS  Google Scholar 

  30. Croker A, Townson J, Allan A, Chambers A (2009) Tumor dormancy, metastasis, and cancer stem cells. In: Teicher B, Bagley R (eds) Stem Cells and Cancer. Humana Press, New York, NY

    Google Scholar 

  31. Eccles SA, Welch DR (2007) Metastasis: recent discoveries and novel treatment strategies. Lancet 369:1742–1757

    PubMed  CAS  Google Scholar 

  32. Steeg PS, Anderson RL, Bar-Eli M, Chambers AF, Eccles SA, Hunter K et al (2009) Preclinical drug development must consider the impact on metastasis. Clin Cancer Res 15:4529–4530

    Google Scholar 

  33. Welch DR (2006) Do we need to redefine a cancer metastasis and staging definitions? Breast Dis 26:3–12

    PubMed  Google Scholar 

  34. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    PubMed  Google Scholar 

  35. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    PubMed  CAS  Google Scholar 

  36. Demicheli R, Miceli R, Moliterni A, Zambetti M, Hrushesky WJM, Retsky MW et al (2005) Breast cancer recurrence dynamics following adjuvant CMF is consistent with tumor dormancy and mastectomy-driven acceleration of the metastatic process. Ann Oncol 16:1449–1457

    PubMed  CAS  Google Scholar 

  37. Naumov GN, Bender E, Zurakowski D, Kang S, Sampson D, Flynn E et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    PubMed  Google Scholar 

  38. Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK et al (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29

    PubMed  Google Scholar 

  39. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    PubMed  Google Scholar 

  40. Finn OJ (2006) Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol Res 36:73–82

    PubMed  CAS  Google Scholar 

  41. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    PubMed  CAS  Google Scholar 

  42. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    PubMed  CAS  Google Scholar 

  43. Graham KC, Ford NL, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC et al (2008) Noninvasive quantification of tumor volume in preclinical liver metastasis models using contrast-enhanced x-ray computed tomography. Invest Radiol 43:92–99

    PubMed  Google Scholar 

  44. Amoh Y, Nagakura C, Maitra A, Moossa AR, Katsuoka K, Hoffman RM et al (2006) Dual-color imaging of nascent angiogenesis and its inhibition in liver metastases of pancreatic cancer. Anticancer Res 26:3237–3242

    PubMed  CAS  Google Scholar 

  45. Bouvet M, Tsuji K, Yang M, Jiang P, Moossa AR, Hoffman RM (2006) In vivo color-coded imaging of the interaction of colon cancer cells and splenocytes in the formation of liver metastases. Cancer Res 66:11293–11297

    PubMed  CAS  Google Scholar 

  46. Wirtzfeld LA, Graham KC, Groom AC, Macdonald IC, Chambers AF, Fenster A et al (2006) Volume measurement variability in three-dimensional high-frequency ultrasound images of murine liver metastases. Phys Med Biol 51:2367–2381

    PubMed  CAS  Google Scholar 

  47. Graham KC, Wirtzfeld LA, MacKenzie LT, Postenka CO, Groom AC, MacDonald IC et al (2005) Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res 65:5231–5237

    PubMed  CAS  Google Scholar 

  48. MacDonald IC, Groom AC, Chambers AF (2002) Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24:885–893

    PubMed  CAS  Google Scholar 

  49. Enomoto T, Oda T, Aoyagi Y, Sugiura S, Nakajima M, Satake M et al (2006) Consistent liver metastases in a rat model by portal injection of microencapsulated cancer cells. Cancer Res 66:11131–11139

    PubMed  CAS  Google Scholar 

  50. Liotta LA, Saidel MG, Kleinerman J (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36:889–894

    PubMed  CAS  Google Scholar 

  51. Suzuki M, Mose ES, Montel V, Tarin D (2006) Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169:673–681

    PubMed  CAS  Google Scholar 

  52. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    PubMed  CAS  Google Scholar 

  53. O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2:689–692

    PubMed  Google Scholar 

  54. Favaro E, Amadori A, Indraccolo S (2008) Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 116:648–659

    PubMed  CAS  Google Scholar 

  55. Shibue T, Weinberg RA (2009) Integrin {beta}1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106:10290–10295

    PubMed  CAS  Google Scholar 

  56. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ et al (2008) Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 68:6241–6250

    PubMed  CAS  Google Scholar 

  57. Morris VL, Koop S, MacDonald IC, Schmidt EE, Grattan M, Percy D et al (1994) Mammary carcinoma cell lines of high and low metastatic potential differ not in extravasation but in subsequent migration and growth. Clin Exp Metastasis 12:357–367

    PubMed  CAS  Google Scholar 

  58. Morris VL, Tuck AB, Wilson SM, Percy D, Chambers AF (1993) Tumor progression and metastasis in murine D2 hyperplastic alveolar nodule mammary tumor cell lines. Clin Exp Metastasis 11:103–112

    PubMed  CAS  Google Scholar 

  59. Rak JW, McEachern D, Miller FR (1992) Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br J Cancer 65:641–648

    PubMed  CAS  Google Scholar 

  60. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589

    PubMed  CAS  Google Scholar 

  61. Yamamoto N, Jiang P, Yang M, Xu M, Yamauchi K, Tsuchiya H et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256

    PubMed  CAS  Google Scholar 

  62. Kobayashi H, Ogawa M, Kosaka N, Choyke PL, Urano Y (2009) Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomed 4:411–419

    CAS  Google Scholar 

  63. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    PubMed  CAS  Google Scholar 

  64. Ikawa K, Terashima Y, Sasaki K, Tashiro S (2002) Genetic detection of liver micrometastases that are undetectable histologically. J Surg Res 106:124–130

    PubMed  Google Scholar 

  65. Sakaue-Sawano A, Ohtawa K, Hama H, Kawano M, Ogawa M, Miyawaki A (2008) Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem Biol 15:1243–1248

    PubMed  CAS  Google Scholar 

  66. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498

    PubMed  CAS  Google Scholar 

  67. Allgayer H, Aguirre-Ghiso JA (2008) The urokinase receptor (u-PAR) – a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS 116:602–614

    PubMed  CAS  Google Scholar 

  68. Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524

    PubMed  CAS  Google Scholar 

  69. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345

    PubMed  CAS  Google Scholar 

  70. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695

    PubMed  CAS  Google Scholar 

  71. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    PubMed  CAS  Google Scholar 

  72. Aguirre Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21:2513–2524

    PubMed  Google Scholar 

  73. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879

    PubMed  CAS  Google Scholar 

  74. Ossowski L, Aguirre-Ghiso JA (2000) Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12:613–620

    PubMed  CAS  Google Scholar 

  75. Ossowski L, Aguirre Ghiso J, Liu D, Yu W, Kovalski K (1999) The role of plasminogen activator receptor in cancer invasion and dormancy. Medicina (B Aires) 59:547–552

    CAS  Google Scholar 

  76. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104

    PubMed  CAS  Google Scholar 

  77. Pantel K, Alix-Panabières C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6:339–351

    PubMed  CAS  Google Scholar 

  78. Demicheli R, Retsky MW, Swartzendruber DE, Bonadonna G (1997) Proposal for a new model of breast cancer metastatic development. Ann Oncol 8:1075–1080

    PubMed  CAS  Google Scholar 

  79. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10:191–199

    PubMed  CAS  Google Scholar 

  80. Demicheli R, Terenziani M, Bonadonna G (1998) Estimate of tumor growth time for breast cancer local recurrences: rapid growth after wake-up? Breast Cancer Res Treat 51:133–137

    PubMed  CAS  Google Scholar 

  81. Karrison TG, Ferguson DJ, Meier P (1999) Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 91:80–85

    PubMed  CAS  Google Scholar 

  82. Demicheli R, Retsky MW, Hrushesky WJM, Baum M (2007) Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: learning from failures. Nat Clin Pract Oncol 4:699–710

    PubMed  Google Scholar 

  83. Retsky M, Bonadonna G, Demicheli R, Folkman J, Hrushesky W, Valagussa P (2004) Hypothesis: Induced angiogenesis after surgery in premenopausal node-positive breast cancer patients is a major underlying reason why adjuvant chemotherapy works particularly well for those patients. Breast Cancer Res 6:R372–374

    PubMed  Google Scholar 

  84. Demicheli R, Bonadonna G, Hrushesky WJM, Retsky MW, Valagussa P (2004) Menopausal status dependence of the timing of breast cancer recurrence after surgical removal of the primary tumour. Breast Cancer Res 6:R689–696

    PubMed  Google Scholar 

  85. Demicheli R (2001) Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 11:297–306

    PubMed  CAS  Google Scholar 

  86. Lee YT (1983) Breast carcinoma: pattern of metastasis at autopsy. J Surg Oncol 23:175–180

    PubMed  CAS  Google Scholar 

  87. Cifuentes N, Pickren JW (1979) Metastases from carcinoma of mammary gland: an autopsy study. J Surg Oncol 11:193–205

    PubMed  CAS  Google Scholar 

  88. Demicheli R, Biganzoli E, Boracchi P, Greco M, Retsky MW (2008) Recurrence dynamics does not depend on the recurrence site. Breast Cancer Res 10:R83

    PubMed  Google Scholar 

  89. Norton L (2007) Tumor dormancy: separating observations from experimental science. Nat Clin Pract Oncol 4:671

    PubMed  Google Scholar 

  90. Demicheli R, Miceli R, Brambilla C, Ferrari L, Moliterni A, Zambetti M et al (1999) Comparative analysis of breast cancer recurrence risk for patients receiving or not receiving adjuvant cyclophosphamide, methotrexate, fluorouracil (CMF). Data supporting the occurrence of ‘cures’. Breast Cancer Res Treat 53:209–215

    PubMed  CAS  Google Scholar 

  91. Retsky MW, Demicheli R, Swartzendruber DE, Bame PD, Wardwell RH, Bonadonna G et al (1997) Computer simulation of a breast cancer metastasis model. Breast Cancer Res Treat 45:193–202

    PubMed  CAS  Google Scholar 

  92. Dignam JJ, Dukic VM (2009) Comments on: Yin W, Di G, Zhou L, Lu J, Liu G, Wu J, Shen K, Han Q, Shen Z, Shao Z. Time-varying pattern of recurrence risk for Chinese breast cancer patients. Breast Cancer Res Treat 116:209–210

    PubMed  Google Scholar 

  93. Yin W, Di G, Zhou L, Lu J, Liu G, Wu J et al (2009) Time-varying pattern of recurrence risk for Chinese breast cancer patients. Breast Cancer Res Treat 114:527–535

    PubMed  Google Scholar 

  94. Brackstone M, Townson JL, Chambers AF (2007) Tumour dormancy in breast cancer: an update. Breast Cancer Res 9:208

    PubMed  Google Scholar 

  95. Dave B, Chang J (2009) Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 14:79–82

    PubMed  Google Scholar 

  96. Zhou J, Zhang Y (2008) Cancer stem cells: models, mechanisms and implications for improved treatment. Cell Cycle 7:1360–1370

    PubMed  CAS  Google Scholar 

  97. Trumpp A, Wiestler OD (2008) Mechanisms of disease: cancer stem cells–targeting the evil twin. Nat Clin Pract Oncol 5:337–347

    PubMed  CAS  Google Scholar 

  98. Viganò L, Ferrero A, Lo Tesoriere R, Capussotti L (2008) Liver surgery for colorectal metastases: results after 10 years of follow-up. Long-term survivors, late recurrences, and prognostic role of morbidity. Ann Surg Oncol 15:2458–2464

    PubMed  Google Scholar 

  99. Small R, Lubezky N, Ben-Haim M (2007) Current controversies in the surgical management of colorectal cancer metastases to the liver. Isr Med Assoc J 9:742–747

    PubMed  Google Scholar 

  100. Adam R, Delvart V, Pascal G, Valeanu A, Castaing D, Azoulay D et al (2004) Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240:644–657; discussion 657–658

    PubMed  Google Scholar 

  101. Bismuth H, Adam R, Navarro F, Castaing D, Engerran L, Abascal A (1996) Re-resection for colorectal liver metastasis. Surg Oncol Clin N Am 5:353–364

    PubMed  CAS  Google Scholar 

  102. Demicheli R, Valagussa P, Bonadonna G (2001) Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer 85:490–492

    PubMed  CAS  Google Scholar 

  103. von Breitenbuch P, Köhl G, Guba M, Geissler E, Jauch KW, Steinbauer M (2005) Thermoablation of colorectal liver metastases promotes proliferation of residual intrahepatic neoplastic cells. Surgery 138:882–887

    Google Scholar 

  104. Meredith K, Haemmerich D, Qi C, Mahvi D (2007) Hepatic resection but not radiofrequency ablation results in tumor growth and increased growth factor expression. Ann Surg 245:771–776

    PubMed  Google Scholar 

  105. Ohsawa I, Murakami T, Uemoto S, Kobayashi E (2006) In vivo luminescent imaging of cyclosporin A-mediated cancer progression in rats. Transplantation 81:1558–1567

    PubMed  CAS  Google Scholar 

  106. Collins I, Workman P (2006) New approaches to molecular cancer therapeutics. Nat Chem Biol 2:689–700

    PubMed  CAS  Google Scholar 

  107. Petrelli A, Giordano S (2008) From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 15:422–432

    PubMed  CAS  Google Scholar 

  108. Press MF, Lenz H (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075

    PubMed  CAS  Google Scholar 

  109. Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6:43–51

    PubMed  CAS  Google Scholar 

  110. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    PubMed  CAS  Google Scholar 

  111. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    PubMed  CAS  Google Scholar 

  112. Pittet MJ (2009) Behavior of immune players in the tumor microenvironment. Curr Opin Oncol 21:53–59

    PubMed  Google Scholar 

  113. Aussilhou B, Panis Y, Alves A, Nicco C, Klatzmann D (2008) Tumor recurrence after partial hepatectomy for liver metastases in rats: prevention by in vivo injection of irradiated cancer cells expressing GMCSF and IL-12. J Surg Res 149:184–191

    PubMed  CAS  Google Scholar 

  114. Pejawar-Gaddy S, Finn OJ (2008) Cancer vaccines: accomplishments and challenges. Crit Rev Oncol Hematol 2008;67:93–102

    Google Scholar 

  115. Marcato P, Dean CA, Giacomantonio CA, Lee PWK (2009) Oncolytic reovirus effectively targets breast cancer stem cells. Mol Ther 17:972–979

    PubMed  CAS  Google Scholar 

  116. Park B, Hwang T, Liu T, Sze DY, Kim J, Kwon H et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9:533–542

    PubMed  CAS  Google Scholar 

  117. Bell JC (2007) Oncolytic viruses: what’s next? Curr Cancer Drug Targets 7:127–131

    PubMed  CAS  Google Scholar 

  118. Nguyên TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo J et al (2008) Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci USA 105:14981–14986

    PubMed  Google Scholar 

  119. Muster T, Rajtarova J, Sachet M, Unger H, Fleischhacker R, Romirer I et al (2004) Interferon resistance promotes oncolysis by influenza virus NS1-deletion mutants. Int J Cancer 110:15–21

    PubMed  CAS  Google Scholar 

  120. Liu J, Stace-Naughton A, Jiang X, Brinker CJ (2009) Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc 131:1354–1355

    PubMed  CAS  Google Scholar 

  121. Liu J, Jiang X, Ashley C, Brinker CJ (2009) Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. J Am Chem Soc 131:7567–7569

    PubMed  CAS  Google Scholar 

  122. Roesli C, Borgia B, Schliemann C, Gunthert M, Wunderli-Allenspach H, Giavazzi R et al (2009) Comparative analysis of the membrane proteome of closely related metastatic and nonmetastatic tumor cells. Cancer Res 69:5406–5414

    PubMed  CAS  Google Scholar 

  123. Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grant #42511 from the Canadian Institutes of Health Research (to AFC). JLT was supported by a doctoral research award from the Canadian Institutes of Health Research. AFC is Canada Research Chair in Oncology, and receives salary support from the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Townson, J.L., Chambers, A.F. (2011). Tumor Dormancy in Liver Metastasis: Clinical and Experimental Evidence and Implications for Treatment. In: Brodt, P. (eds) Liver Metastasis: Biology and Clinical Management. Cancer Metastasis - Biology and Treatment, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0292-9_8

Download citation

Publish with us

Policies and ethics