Advertisement

Localized modeling of uncertainty in the Arlequin framework

  • R. Cottereau
  • D. Clouteau
  • H. Ben Dhia
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 27)

Abstract

This paper discusses the coupling and interaction of a classical continuum model with another continuum model with random parameters. The former model, deterministic, aims at representing a part of the domain where the local fluctuations of the parameters, such as Young’s modulus, do not influence the output of interest in a significant manner, and where a homogenized model is sufficient to predict this output. The latter model, stochastic, stands for the part of the domain where the local behavior is of interest and the fluctuations of the parameters cannot be considered only in a homogenized way. The coupling of these models is performed in the Arlequin framework. This paper focuses on the technical definitions of the spaces and operators introduced in the Arlequin framework for that particular problem, and on the definition of the corresponding discretized formulations. A simple example is shown, emphasizing the gain in computational power to compute the mean and confidence intervals in the region of interest.

Keywords

Representative Volume Element Homogeneous Dirichlet Boundary Condition Representative Volume Element Size Coupling Zone Indented Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babuška I, Tempone R, Zouraris GE (2004) Galerkin Finite Element aproximations of stochastic elliptic partial differential equations. SIAM J Numer Anal 42(2):800–825 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. Comptes-Rendus de l’Académie des Sciences - series IIB 326(12):899–904 zbMATHGoogle Scholar
  3. 3.
    Ben Dhia H (2008) Further insights by theoretical investigations of the multiscale Arlequin method. Int J Multiscale Comp Engr 6(3):215–232 CrossRefGoogle Scholar
  4. 4.
    Ben Dhia H, Rateau G (2001) Mathematical analysis of the mixed Arlequin method. Comptes-Rendus Acad Sci (Series I - Math) 332(7):649–654 zbMATHMathSciNetGoogle Scholar
  5. 5.
    Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Meths Engr 62(11):1442–1462 zbMATHCrossRefGoogle Scholar
  6. 6.
    Ben Dhia H, Zammali C (2007) Level-Sets fields, placement and velocity based formulations of contact-impact problems. Int J Numer Meths Engr 69(13):2711–2735 zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comp Mat Sci 27:351–374 CrossRefGoogle Scholar
  8. 8.
    Chamoin L, Oden JT, Prudhomme S (2008) A stochastic coupling method for atomic-to-continuum Monte Carlo simulations. Comp Meths Appl Mech Engr 197(43-44):3530–3546 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Doostan A, Ghanem RG, Red-Horse J (2007) Stochastic model reduction for chaos representation. Comp Meths Appl Mech Engr 196(37-40):3951–3966 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach, Springer-Verlag zbMATHGoogle Scholar
  11. 11.
    Ghanem RG, Kruger R (1996) Numerical solution of spectral stochastic finite element systems. Comp Meths Appl Mech Engr 129(3):289–303 zbMATHCrossRefGoogle Scholar
  12. 12.
    Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40:3647–3679 zbMATHCrossRefGoogle Scholar
  13. 13.
    Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Prob Engr Mech 21(2):112–132 CrossRefGoogle Scholar
  14. 14.
    Pellissetti MF, Ghanem RG (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv Engr Sftw 31(8-9):607–616 zbMATHCrossRefGoogle Scholar
  15. 15.
    Robert CP, Casella G (2004) Monte Carlo statistical methods, Springer zbMATHGoogle Scholar
  16. 16.
    Sarkar A, Benabbou N, Ghanem RG (2009) Domain decomposition of stochastic PDEs: theoretical formulations. Int J Numer Meths Engr 77(5):689–701 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Stefanou G (2009) The stochastic finite element method: past, present and future. Comp Meths Appl Mech Engr 198(9-12):1031–1051 CrossRefGoogle Scholar
  18. 18.
    Savin E, Clouteau D (2002) Elastic wave propagation in a 3-D unbounded random heterogeneous medium coupled with a bounded medium. Application to seismic soil-structure interaction (SSSI). Int J Numer Meths Engr 54(4):607–630 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Soize C (2006) Non-gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comp Meths Appl Mech Engr 195:26–64 zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Soize C (2008) Tensor-valued random field for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size. Prob Engr Mech 23:307–323 CrossRefGoogle Scholar
  21. 21.
    Spanos PD, Kontsos A (2008) Multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites. Prob Engr Mech 23:456–470 CrossRefGoogle Scholar
  22. 22.
    Williams PD (2005) Modelling climate change: the role of unresolved processes. Phil Trans R Soc A 363:2931–2946 CrossRefGoogle Scholar
  23. 23.
    Xu XF, Chen X (2009) Stochastic homogenization of random elastic multi-phase composites and size quantification of representative volume element. Mech Mat 41(2):174–186 CrossRefGoogle Scholar
  24. 24.
    Zaoui A (2002) Continuum micromechanics: a survey. J Engr Mech 128(8): 808–816 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratoire MSSMatÉcole Centrale Paris, CNRS UMR 8579Châtenay-Malabry cedexFrance

Personalised recommendations