Vibrations of layered structures with fuzzy core stiffness/fuzzy interlayer slip

  • Rudolf Heuer
  • Franz Ziegler
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 27)


Mainly the matrix in composite structures exhibits fuzzy randomness of the material parameters. When extending the work on two and symmetric, three layer beam-, plate- and shell structures based on the definition of an equivalent effective homogeneous model, to include either fuzzy interface slip or fuzzy core stiffness, we can avoid numerical analyses schemes and work out the effects on the dynamic properties of these fuzzy structures. Fully analyzed within the scope of this paper is a simply supported sandwich beam with fuzzy core material parameters. The analysis of this illustrative example is based on the interval representation (interval of confidence at a given level of presumption, i.e. α-cut) with a triangular fuzzy membership function of the core shear stiffness prescribed. Fuzzy membership functions of the natural frequencies are defined using fuzzy set theory, however, avoiding artificial uncertainties. Under time-harmonic excitation, the dynamic magnification factors and, with light modal structural damping taken into account, the fuzzy phase angles of the modal response are evaluated. Thus, modal superposition of forced vibrations becomes fuzzy in both, the time and the amplitude response. Where possible, envelope functions are defined.


Envelope Function Sandwich Beam Force Frequency Modal Superposition Interval Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Möller B. and Beer M. (2004) Fuzzy Randomness. Springer-Verlag, Berlin. zbMATHGoogle Scholar
  2. 2.
    Hanss M. and Willner K. (2000) A fuzzy arithmetical approach to the solution of finite element problems with uncertain parameters. Mechanics Research Communications 27, 257–272. zbMATHCrossRefGoogle Scholar
  3. 3.
    Dasgupta G. (2008) Stochastic shape functions and stochastic strain-displacement matrix for a stochastic finite element stiffness matrix. Acta Mechanica 195, 379–395. zbMATHCrossRefGoogle Scholar
  4. 4.
    Adam C., Heuer R., Raue Annegret and Ziegler F. (2000) Thermally induced vibrations of composite beams with interlayer slip. J. Thermal Stresses 23, 747–772. CrossRefGoogle Scholar
  5. 5.
    Heuer R. (2007) Equivalence in the analysis of thermally induced vibrations of sandwich structures. J. Thermal Stresses 30, 605–621. CrossRefGoogle Scholar
  6. 6.
    Irschik H., Heuer R. and Ziegler F. (2000) Statics and dynamics of simply supported polygonal Reissner-Mindlin plates by analogy. Archive of Applied Mechanics 70, 231–244. zbMATHCrossRefGoogle Scholar
  7. 7.
    Heuer R., Irschik H. and Ziegler F. (1992) Thermally forced vibrations of moderately thick polygonal plates. J. Thermal Stresses 15, 203–210. CrossRefGoogle Scholar
  8. 8.
    Zadeh L.A. (1965) Fuzzy sets. Information and Control 8, 338–353. zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Viertl R. and Hareter D. (2006) Beschreibung und Analyse unscharfer Informationen — Statistische Methoden für unscharfe Daten. Springer-Verlag, Berlin (p. 32). Google Scholar
  10. 10.
    Ziegler, F. (2005) Computational aspects of structural shape control. Comp. Struct. 83/15–16, 1191–1204. CrossRefGoogle Scholar
  11. 11.
    Mura T. (1991) Micromechanics of Defects in Solids. 2nd ed. Kluwer, Dordrecht. Google Scholar
  12. 12.
    Plantema F.J. (1966) Sandwich Construction. John Wiley, New York. Google Scholar
  13. 13.
    Stamm K. and Witte H. (1974) Sandwichkonstruktionen. Springer-Verlag, New York. zbMATHGoogle Scholar
  14. 14.
    Reddy J.N. (1993) An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Comp. Struct. 25, 21–35. CrossRefGoogle Scholar
  15. 15.
    Irschik H. (1993) On vibrations of layered beams and plates. ZAMM 73, T34–T45. zbMATHMathSciNetGoogle Scholar
  16. 16.
    Hoischen A. (1954) Verbundträger mit elastischer und unterbrochener Verdübelung. Bauingenieur 29, 241–244. Google Scholar
  17. 17.
    Goodman J.R. and Popov E.P. (1968) Layered beam systems with interlayer slip. J. Struct. Div., ASCE 94, 2535–2547. Google Scholar
  18. 18.
    Chonan S. (1982) Vibration and stability of sandwich beams with elastic bonding. J. Sound and Vibration 85, 525–537. CrossRefGoogle Scholar
  19. 19.
    Murakami H. (1984) A laminated beam theory with interlayer slip. J. Appl. Mech. 51, 551–559. zbMATHCrossRefGoogle Scholar
  20. 20.
    Heuer A. (2004) Correspondence for the analysis of sandwich beams with or without interlayer slip. Mech. Advanced Materials Structures 11, 425–432. CrossRefGoogle Scholar
  21. 21.
    Heuer R., Adam C. and Ziegler F. (2003) Sandwich panels with interlayer slip subjected to thermal loads. J. Thermal Stresses 26, 1185–1192. CrossRefGoogle Scholar
  22. 22.
    Ziegler F. (1998) Mechanics of Solids and Fluids. 2nd corr. ed. Springer-Verlag, NewYork. zbMATHGoogle Scholar
  23. 23.
    Massa F., Leroux A., Lallemand B., Tison T., Buffe F., Mary S. (2010) Fuzzy vibration analysis and optimization of engineering structures. In: Proc. IUTAM Symposium on The Vibration Analysis of Structures with Uncertainties (Eds. A.K. Belyaev and R.S. Langley), pp. 65–78 Springer Academic Publishers, Dordrecht, The Netherlands. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Civil Engineering DepartmentVienna University of TechnologyViennaAustria

Personalised recommendations