Skip to main content

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 27))

  • 1374 Accesses

Abstract

This paper provides an overview along with a critical appraisal of available methods for uncertainty propagation of linear systems subjected to dynamic loading. All uncertain structural properties are treated as random quantities by employing a stochastic approach. The loading can be either of deterministic or stochastic nature, described by withe noise, filtered white noise, and more generally, by a Gaussian stochastic process. The assessment of the variability of the uncertain response in terms of the mean and variance is described by reviewing the random eigenvalue problem and procedures to evaluate the first two moments of the stochastic (uncertain) response. Computational procedures which are efficiently applicable for general FE-models are in the focus of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babuska I, Banerjee U, Osborn J (2002) On principles for the selection of shape functions for the generalized finite element method. Comput Methods Appl Mech Engrg 191:5595–5629

    Article  MATH  MathSciNet  Google Scholar 

  2. Barbato M, Conte J (2007) Simplified probabilistic dynamic response analysis of structural systems. In: M Papadrakakis NDL DC Charmpis, Tsompanakis Y (eds) ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Rethymno, Crete, Greece, 13–16 June.

    Google Scholar 

  3. Benfratello S, Muscolino G (1998) A perturbation approach for the response of dynamically modified structural systems. Computers & Structures 68:101–112

    Article  MATH  Google Scholar 

  4. Capiez-Lernout E, Pellissetti M, Pradlwarter H, Schuëller G, Soize C (2006) Data and model uncertainties in complex aerospace engineering systems. Journal of Sound and Vibration 295:923–938

    Article  Google Scholar 

  5. Casella G, George E (1992) Explaining the gibbs sampler. Am Stat 46:167–174

    Article  MathSciNet  Google Scholar 

  6. Chib S, Greenberg E (1995) Understanding the metropolis-hastings algorithm. American Statistician 49:327–335

    Article  Google Scholar 

  7. Choi KM, Cho SW, Ko MG, Lee TW (2004) Higher order eigensensitivity analysis of damped systems with repeated eigenvalues. Computers & Structures 82:63–69

    Article  Google Scholar 

  8. Contreras H (1980) The stochastic finite-element methods. Computers & Structures 12:341–348

    Article  MATH  MathSciNet  Google Scholar 

  9. Di Paola M, Pirrotta A, Zingales M (2004) Stochastic dynamics of linear elastic trusses in presence of structural uncertainties (virtual distortion approach). Probabilistic Engineering Mechanics 19:41–51

    Article  Google Scholar 

  10. Doostan A, Ghanem R, Red-Horse J (2007) Stochastic model reduction for chaos representations. Comput Methods Appl Mech Engrg 196:3951–3966

    Article  MATH  MathSciNet  Google Scholar 

  11. Falsone G, Ferro G (2007) An exact solution for the static and dynamic analysis of fe discretized uncertain structures. Comput Methods Appl Mech Engrg 196:2390–2400

    Article  MATH  Google Scholar 

  12. Falsone G, Impollonia N (2002) A new approach for the stochastic analysis of finite element modeled structures with uncertain parameters. Comput Methods Appl Mech Engrg 191:5067–5085

    Article  MATH  Google Scholar 

  13. Field R, Grigoriu M (2004) On the accuracy of the polynomial chaos approximation. Probabilistic Engineering Mechanics 19:65–80

    Article  Google Scholar 

  14. Fishman G (1996) Monte Carlo: concepts, algorithms, and applications. Springer Series in Operations Research. New York: Springer-Verlag

    MATH  Google Scholar 

  15. Fox R, Kapoor M (1968) Rates if change of eigenvalues and eigenvectors. AIAA Journal 6(2):2426–2429

    Article  MATH  Google Scholar 

  16. Gaoa W, Zhang N, Ji J (2009) A new method for random vibration analysis of stochastic trusss tructures. Finite Elements in Analysis and Design 45:190–199

    Article  MathSciNet  Google Scholar 

  17. Ghanem R, Kruger R (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Engrg 129:289–303

    Article  MATH  Google Scholar 

  18. Ghanem R, Spanos P (1991) Stochastic Finite Elements: A Spectral Approach. Springer-Verlag

    MATH  Google Scholar 

  19. Ghosh D, Ghanem R, Red-Horse J (2005) Analysis of eigenvalues and modal interaction of stochastic systems. AIAA Journal 43(10):2196–2201

    Article  Google Scholar 

  20. Goller B, Pellissetti M (2009) Calibration ofthe damping dispersion parameter in a non-parametric probabilistic approach. Journal ofSound and Vibration 324:690–711

    Article  Google Scholar 

  21. Grigoriu M (1998) Simulation of stationary non-gaussian translation processes. Journal of Engineering Mechanics 124(2):121–126

    Article  Google Scholar 

  22. Grigoriu M (2006) Evaluation of Karhunen-Loève, spectral, and sampling representations for stochastic processes. Journal of Engineering Mechanics, ASCE 132(2):179–189

    Article  Google Scholar 

  23. Hammersley J, Handscomb D (1964) Monte Carlo Methods. Methuen, London

    MATH  Google Scholar 

  24. Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  MATH  Google Scholar 

  25. Kahn H (1956) Use of different Monte Carlo sampling techniques. In: Mayer M (ed) Symposium on Monte Carlo methods, Wiley, New York, pp 146–190

    Google Scholar 

  26. Kaminski M (2007) Generalized perturbation-based stochastic finite element method in elastostatics. Computers & Structures 85:586–594

    Article  Google Scholar 

  27. Kanapady R, Tamma K (2003) A-scalability and an integrated computational technology and framework for non-linear structural dynamics. part 1: Theoretical developments and parallel formulations. Int J Numer Meth Engng 58:2265–2293

    Article  MATH  Google Scholar 

  28. Karhunen K (1947) Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Amer Acad Sci, Fennicade, Ser A 37:3–79

    Google Scholar 

  29. Keese A, Matthies H (2003) Adaptivity and sensitivity for stochastic problems. In: Spanos PD, Deodatis G(eds) Computational Stochastic Mechanics 4, Millpress, Rotterdam, pp 311–316

    Google Scholar 

  30. Lee IW, Jung GH (1997) An efficient algebraic method for computation of natural frequency and mode shape sensitivities: Part ii. multiple natural frequencies. Computers & Structures 62(3):437–443

    Article  Google Scholar 

  31. Li J, Liao S (2001) Response analysis of stochastic parameter structures under non-stationary random excitation. Computational Mechanics 27:61–68

    Article  MATH  Google Scholar 

  32. Liu C, Liu X, Chang C (1995) On sensitivity analysis of discrete structural systems. Computers & Structures 56(1):141–145

    Article  MATH  Google Scholar 

  33. Liu PL, Der Kiureghian A (1986) Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics 1(2):105–112

    Article  Google Scholar 

  34. Liu ZS, Chen S, Yu M, Zhao YQ (1994) Contribution of the truncated modes to eigenvector derivatives. AiAA Journal 32(7):1551–1553

    Article  MATH  Google Scholar 

  35. Loéve M (1948) Fonctions aleatoires du second ordre, supplemeent to P. Levy. In: Processus Stochastic et Mouvement Brownien, Gauthier Villars, Paris

    Google Scholar 

  36. Guedri M, Ghanmi S, Majed R, Bouhaddi N (2009) Robust tools for prediction of variability and optimizationin structural dynamics. Mechanical Systems and SignalProcessing 23:1123–1133

    Article  Google Scholar 

  37. Mace B, Worden K, Manson G (2005) Uncertainty in structural dynamics. J of Sound and Vibration 288(3):423–429

    Article  Google Scholar 

  38. Metha M (2004) Random Matrices, vol Third Edition. Elsevier, Academic Press, Amsterdam, Tokyo

    Google Scholar 

  39. Metropolis N, Ulam S (1949) The Monte Carlo method. J Amer Statist Assoc 44:335–341

    Article  MATH  MathSciNet  Google Scholar 

  40. Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Physics 21:1087–1092

    Article  Google Scholar 

  41. Nair P, Keane A (2003) An approximate solution scheme for the algebraic random eigenvalue problem. Journal of Sound and Vibration 260:45–65

    Article  Google Scholar 

  42. Nelson R (1976) Simplified calculation of eigenvector derivatives. AIAA Journal 14(9):1201–1205

    Article  MATH  Google Scholar 

  43. Van den Nieuwenhof B, Coyette JP (2003) Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties. Comput Methods Appl Mech Engrg 192:3705–3729

    Article  MATH  Google Scholar 

  44. Ojalvo I (1988) Efficient computation of modal sensitivities. AIAA J 26(3):361–366

    Article  MATH  Google Scholar 

  45. Papadimitriou C, Beck J, Katafygiotis L (2001) Updating robust reliability using structural test data. Probabilistic Engineering Mechanics 16:103–113

    Article  Google Scholar 

  46. Papadrakakis M, Kotsopulos A (1999) Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering 168:305–320

    Article  MATH  Google Scholar 

  47. Pellissetti M, Ghanem R (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Advances in Engineering Software 31:607–616

    Article  MATH  Google Scholar 

  48. Pradlwarter H, Schuëller G, Székely G (2002) Random eigenvalue problems for large systems. Computers and Structures 80:2415–2424

    Article  MathSciNet  Google Scholar 

  49. Rahman S (2006) A solution of the random eigenvalue problem by a dimensional decomposition method. Int J Numer Meth Engng 67:1318–1340

    Article  MATH  Google Scholar 

  50. Rahman S (2007) Stochastic dynamic systems with complex-valued eigensolutions. Int J Numer Meth Engng 71:963–986

    Article  MATH  Google Scholar 

  51. Rubinstein R (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  52. Schenk CA, Schuëller GI (2005) Uncertainty Assessment of Large Finite Element Systems. Springer-Verlag, Berlin/Heidelberg/New York, http://www.springer.com/east/home/engineering?SGWID=5-175-22-48087685-0&changeHeader=true

    MATH  Google Scholar 

  53. Schuëller G, Pradlwarter H, Vasta M, Harnpornchai N (1998) Benchmark-study on non-linear stochastic structural dynamics. In: N Shiraishi Y Wen M Shinozuka (ed) Proceedings of the 7th Int. Conf. an Structural Safety and Reliability, A.A. Balkema Publ., Rotterdam, The Netherlands, pp 355-361

    Google Scholar 

  54. Schuëller GI, Pradlwarter HJ, Beck J, Au S, Katafygiotis L, Ghanem R (2005) Benchmark study on reliability estimation in higher dimensions of structural systems — an overview. In: Soize C, Schuëller GI (eds) Structural Dynamics EURODYN 2005 – Proceedings of the 6th International Conference on Structural Dynamics, Millpress, Rotterdam, Paris, France, pp 717–722

    Google Scholar 

  55. Shioya R, Yagawa G (2005) Large-scale parallel finite-element analysis using the internet: a performance study. Int J Numer Meth Engng 63:218–230

    Article  MATH  Google Scholar 

  56. Sniady P, Adamowski R, Kogut G, Zielichowski-Haber W (2008) Spectral stochastic analysis of structures with uncertain parameters. Probabilistic Engineering Mechanics 23:76–83

    Article  Google Scholar 

  57. Soize C (2000) A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probabilistic Engineering Mechanics 15:277–294

    Article  Google Scholar 

  58. Soize C (2001) Nonlinear dynamical systems with nonparametric model of random uncertainties. Uncertainties in Engineering Mechanics 1(1):1–38, http://www.resonance-pub.com

    MathSciNet  Google Scholar 

  59. Soize C (2003) Random matrix theory and non-parametric model of random uncertainties in vibration analysis. Journal of Sound and Vibration 263:893–916

    Article  MathSciNet  Google Scholar 

  60. Soize C (2005) A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics. Journal of Sound and Vibration 288:623–652

    Article  MathSciNet  Google Scholar 

  61. Spall J (2003) Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. John Wiley & Sons, Inc.

    Book  MATH  Google Scholar 

  62. Szèkely G, Schuëller G (2001) Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties. Comput Methods Appl Mech Engrg 191:799–816

    Article  Google Scholar 

  63. Wu B, Xu Z, Li Z (2007) Improved Nelson’s method for computing eigenvector derivatives with distinct and repeated eigenvalues. AIAA J (Technical Notes) pp 1–2

    Google Scholar 

  64. Yamazaki F, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. Journal of Engineering Mechanics 114(8):1335–1354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Schuëller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Schuëller, G.I., Pradlwarter, H.J. (2011). Uncertain Linear Systems in Dynamics: Stochastic Approaches. In: Belyaev, A., Langley, R. (eds) IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties. IUTAM Bookseries, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0289-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0289-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0288-2

  • Online ISBN: 978-94-007-0289-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics