Skip to main content

How to Grow Environmental – Sound Biofuels

  • Conference paper
  • First Online:
Environmental Heavy Metal Pollution and Effects on Child Mental Development

Abstract

EU strategy of renewable energy development assumes an increase of energy from renewable sources, up to 7.5% in 2010 and to 14% in 2020. In terms of that project production and usage of woody and herbaceous energy crops for power and heat generation on contaminated sites is said to be a pro20 position for wide spectrum of brownfields. Persistent soil pollutants, like heavy metals, are source of soil degradation and create the most complicated problems, as the phenomenon of natural attenuation, which is functioning in case of many other pollutants, is not applicable here. For environmental friendly combustion process (Nussbaumer, 2003) plants used as energy crop, should be free from harmful compounds. There is a luck of easily available information related to the physiological properties of plants concerning heavy metals uptake. Heavy metal concentration in plants is related to the plant species and cultivars. Possibilities of using the list of plants with the low level of heavy metal shoot concentration should help to grow environmentally safe energetic crop. For production of biomass with low level of heavy metals different chemo31 stabilization scenarios for various areas are expected. First contaminated soils should be remediated before energy crop production. Chemicals introduced to the soil bind metals and diminish metal uptake by plants. Appropriate soil pH also could stabilize metal migration in the soil compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter-19: References

  • Berti, W.R., Cunningham, S.D., Cooper E.M., 1998. Case studies in the field – in-place inactivation and phytorestoration of Pb-contaminated sites. In: Vangronsveld, J., Cunningham, S.D. (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag Berlin Heidelberg and R.G. Landes Company, Georgetown, TX, U.S.A., pp. 235-248.

    Google Scholar 

  • Blaylock M.J, Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31.3: 860-865.

    Article  Google Scholar 

  • Budzyński W., Bielski St. 2004. Energy resources of agriculture origin. Part II. Biomass as a solid fuel (review). Acta Sci. Pol., Agricultura. 3.2:15-26.

    Google Scholar 

  • Clemens S., Palmgren M.G., Krämer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Science. 7.7: 309-315.

    Article  CAS  Google Scholar 

  • Cunningham S.,D., Berti W.R. 2000. Phytoextraction and phytostabilization: Technical, economic, and regulatory considerations of the soil- lead issue. In: N. Terry, G. Banuelos (eds.) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton Fl, USA, p.1-12.

    Google Scholar 

  • Hamon R. E., McLaughlin M. J., Cozens G., 2002. Mechanisms of attenuation of metal availability in in situ remediation treatments. Environ. Sci. Technol. 36, 3991-3996.

    Article  CAS  Google Scholar 

  • Knox, A.S., Seaman, J., Adriano, D.C., Pierzynski, G., 2000. Chemophytostabilization of metals in contaminated soils. In: Wise, D.L., Trantolo, D.J., Cichon, E.J., Inyang, H.I., Stottmeister, U. (Eds.), Bioremediation of contaminated soils. Marcel Dekker, Inc., New York, Basel, pp 811-836.

    Google Scholar 

  • Knox, A.S., Seaman, J.C., Mench, M.J., Vangronsveld, J., 2001. Remediation of metal- and radionuclides-contaminated soils by in situ stabilization techniques. In: Iskandar, I.K. (Ed.), Environmental restoration of metal-contaminated soils. Lewis Publishers, Boca Raton, London, New York, Washington, D.C, pp. 21-60.

    Google Scholar 

  • Kucharski R., Sas-Nowosielska A., Małkowski E., Japenga J., J.M. Kuperberg, Pogrzeba M., Krzyżak J. 2005. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant and Soil (2005) 273:291-305.

    Article  CAS  Google Scholar 

  • Kucharski R., Sas-Nowosielska A., Pogrzeba M., 2008. Diminishing of human exposure from active lead and zinc mining dumps. L. Simeonov and V. Sargsyan (eds.), Soil Chemical Pollution, Risk Assessment, Remediation and Security, 293-299.

    Google Scholar 

  • Laperche V., 2001. Immobilization of lead by in situ formation of lead phosphates in soil. In: Iskandar I. K. (Eds.). Environmental restoration of metals-contaminated soils. Lewis Publishers, USA, Boca Raton, Florida, pp. 61-76.

    Google Scholar 

  • Lepp, N.W., Dickinson N.M., 1998. Biological interactions: the role of woody plants in phytorestoration. In: Vangronsveld, J., Cunningham, S.D. (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag Berlin Heidelberg and R.G. Landes Company, Georgetown, TX, U.S.A., pp. 67-73.

    Google Scholar 

  • Li, Y.M., Chaney, L., 1998. Case studies in the field – industrial sites: phytostabilization of zinc smelter-contaminated sites: the palmerton case. In: Vangronsveld, J., Cunningham, S.D. (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag Berlin Heidelberg and R.G. Landes Company, Georgetown, TX, U.S.A., pp. 197-210.

    Google Scholar 

  • McGowen S. L., Basta N. T., Brown G. O., 2001. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J. Environ. Qual. 30, 493-500.

    Article  CAS  Google Scholar 

  • McGrath, S.P., Zhao, F.J., Lombi, E., 2002. Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy 75, 1-56.

    Article  CAS  Google Scholar 

  • Nussbaumer T. 2003. Combustion and co-combustion of biomass: fundamentals, technologies, and primery messures for emission reduction. Energy Fuels. 17.6:1510-1521.

    Article  CAS  Google Scholar 

  • Salt D.E., Blaylock M., Kumar N.P.B.A., Dushenkov V., Ensley B.D., Chet I., Raskin I. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology.13: 468-473.

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A., Galimska-Stypa R., Kucharski R., Zielonka U., Małkowski E., Gray L. 2008a. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environmental Monitoring and Assessment. 137.(1-3): 101-109.

    Article  CAS  Google Scholar 

  • Sas-Nowosielska A., Kucharski R., Kuperberg J.M., Japenga J., Pogrzeba M., Krzyżak J. 2008b. Phytoremediation technologies used to reduce environmental threat posed by metal-contaminated soils. Theory and Reality. NATO Science Conference, 285-298

    Google Scholar 

  • Sas-Nowosielska A., Kucharski R., Pogrzeba M., Krzyżak J., Kuperberg J. M., Japenga J. 2007. Phytoremediation technologies used to reduce environmental thread posed by metal-contaminated soils: theory and reality. w Simeonov i Sargsyan red. Simulation and assessement of chemical processes in a multiphase environment. (The NATO science for peace and security programme). Springer Science: 285-298.

    Google Scholar 

  • Simeonov, L.I, B.G. Simeonova and J. Nikolova, Phytoremediation of Industrially Polluted with Heavy Metals Lands in Bulgaria (First trials), Proc. of 1999 Contaminated Site Remediation Conf.: Challenges Posed by Urban and Industrial Contaminants, Freemantle, Australia, 551-557, 1999.

    Google Scholar 

  • Simeonova B. and L. Simeonov. 2006. An application of a phytoremediation technology in Bulgaria. The Kremikovtzi Steel Works experiment. Remediation Journal, Spring edition 2006 Wiley Periodicals, Inc. New York, pp. 113-123.

    Google Scholar 

  • Simeonova B. and L. Simeonov. 2006a. Planning and execution a phytoremediation pilot experiment. In Chemicals as intentional and accidental global environmental threats,Borovetz, 2006, L. Simeonov, E. Chirila (eds). NATO Science Series C, Environmental Security, Springer, Dordrecht, pp. 297-303.

    Chapter  Google Scholar 

  • Vangronsveld, J., 1998. Case studies in the field – industrial sites: phytostabilization of zinc-smelter contaminated site: the Lommel-Maatheid Case. In: Vangronsveld, J., Cunningham, S.D. (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag, Berlin, Heidelberg and R.G. Landes Company, Georgetown, TX, U.S.A., pp. 211-216.

    Google Scholar 

  • Vangronsveld, J., Cunningham, S.D., 1998. Introduction to the concept. In: Vangronsveld, J., Cunningham, S.D. (Eds.), Metal-contaminated soils: in situ inactivation and phytorestoration. Springer-Verlag, Berlin, Heidelberg and R.G. Landes Company, Georgetown, TX, U.S.A., pp. 1-15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Sas-Nowosielska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sas-Nowosielska, A., Pogrzeba, M., Kita, A., Małkowski, E., Sas-Nowosielska, H. (2011). How to Grow Environmental – Sound Biofuels. In: Simeonov, L., Kochubovski, M., Simeonova, B. (eds) Environmental Heavy Metal Pollution and Effects on Child Mental Development. NATO Science for Peace and Security Series C: Environmental Security, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0253-0_19

Download citation

Publish with us

Policies and ethics