A computational study of turbulent flow separation for a circular cylinder using skin friction boundary conditions

  • Johan Hoffman
  • Niclas Jansson
Part of the ERCOFTAC Series book series (ERCO, volume 16)


In this paper we present a computational study of turbulent flow separation for a circular cylinder at high Reynolds numbers. We use a stabilized finite element method together with skin friction boundary conditions, where we study flow separation with respect to the decrease of a friction parameter. In particular, we consider the case of zero friction corresponding to pure slip boundary conditions, for which we observe an inviscid separation mechanism of large scale streamwise vortices, identified in our earlier work. We compare our computational results to experiments for very high Reynolds numbers. In particular, we connect the pattern of streamwise vorticity in our computations to experimental findings of spanwise 3d cell structures reported in the literature.


Turbulent boundary layer flow separation General Galerkin method a posteriori error estimation adaptive finite element method skin friction boundary conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Deck, P. Sagaut, and M. Terracol, Multiscale and multiresolution approaches in turbulence, Imperial College Press, 2006. Google Scholar
  2. 2.
    J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible euler and navier-stokes solutions, Nonlinearity, (2000), pp. 249–255. Google Scholar
  3. 3.
    J. L. Guermond and S. Prudhomme, On the construction of suitable solutions to the navier-stokes equations and questions regarding the definition of large eddy simulation, Physica D, 207(1-2) (2005), pp. 64–78. MATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    J. Hoffman, Computation of mean drag for bluff body problems using adaptive DNS/LES, SIAM J. Sci. Comput., 27(1) (2005), pp. 184–207. MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Hoffman, Adaptive simulation of the turbulent flow past a sphere, J. Fluid Mech., 568 (2006), pp. 77–88. MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    J. Hoffman, Computation of turbulent flow past bluff bodies using adaptive general galerkin methods: drag crisis and turbulent euler solutions, Comput. Mech., 38 (2006), pp. 390–402. MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Hoffman, Simulation drag crisis for a sphere using skin friction boundary conditions, in proceedings for ECCOMAS CFD 2006, Egmond aan Zee, 2006. Google Scholar
  8. 8.
    J. Hoffman, Efficient computation of mean drag for the subcritical flow past a circular cylinder using general galerkin g2, Int. J. Numer. Meth. Fluids, 59(11) (2009), pp. 1241–1258. MATHCrossRefGoogle Scholar
  9. 9.
    J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow: Applied Mathematics Body and Soul Vol 4, Springer-Verlag Publishing, 2006. Google Scholar
  10. 10.
    J. Hoffman and C. Johnson, A new approach to computational turbulence modeling, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 2865–2880. MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. Hoffman and C. Johnson, Resolution of d’Alembert’s paradox, J. Math. Fluid Mech., (Published Online First at 10 December 2008).
  12. 12.
    T. Hughes, Y. Bazilevs, C. Michler, and V. M. Cao, Weak dirichlet boundary conditions for wall-bounded turbulent flows, Comp. Meth. Appl. Mech. Engrng., 196 (2007), pp. 4853–4862. MATHCrossRefGoogle Scholar
  13. 13.
    J. S. Humphreys, On a circular cylinder in a steady wind at transition Reynolds numbers, Journal of Fluid Mechanics, 9(4) (1960), pp. 603–612. MATHCrossRefADSGoogle Scholar
  14. 14.
    V. John, Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equations - numerical tests and aspects of the implementation, J. Comp. Appl. Math., 147 (2002), pp. 287–300. MATHCrossRefADSGoogle Scholar
  15. 15.
    A. I. Korotkin, The three dimensionality of the flow transverse to a circular cylinder, Fluid Mechanics - Soviet Research, 5 (1976), p. 2. Google Scholar
  16. 16.
    W. Layton, Weak imposition of no-slip boundary conditions in finite element methods, Computers and Mathematics with Applications, 38 (1999), pp. 129–142. MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin, Heidelberg, New York, 2001. MATHGoogle Scholar
  18. 18.
    V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55(2) (1977), pp. 97–112. MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    H. Schlichting, Boundary Layer Theory, McGraw-Hill, 1955. MATHGoogle Scholar
  20. 20.
    K. Stewartson, D’alembert’s paradox, SIAM Review, 23(3) (1981), pp. 308–343. MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    A. Travin, M. Shur, M. Strelets, and P. Spalart, Detached-eddy simulation pas a circular cylinder, Flow, Turbulence and Combustion, 63 (1999), pp. 293–313. CrossRefGoogle Scholar
  22. 22.
    M. M. Zdravkovich, Flow around circular cylinders: a comprehensive guide through flow phenomena, experiments, applications, mathematical models, and simulations. Vol.1 [Fundamentals], Oxford Univ. Press, Oxford, 1997. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Computational Technology LaboratoryComputer Science and Communication, KTHStockholmSweden

Personalised recommendations