Scalar sub-grid energy in large-eddy simulation of turbulent flames: mesh quality criterion

  • Luc Vervisch
  • Pascale Domingo
  • Guido Lodato
  • Denis Veynante
Part of the ERCOFTAC Series book series (ERCO, volume 16)

Abstract

In Large-Eddy Simulation (LES), scalar fluctuations are decomposed into a resolved part and a complementary Sub-Grid Scale (SGS) part. Accordingly, it is usually assumed that the scalar energy contained in these two parts sum up, so that the time average of the scalar energy equals the time average of the resolved part of the scalar energy to which the time average of the SGS scalar variance is added. Conditions are discussed under which an additional residual term must be added to close this scalar energy budget. For this residual term to stay at a moderate level, the LES filter must be small enough compared to the integral length-scale of the scalar field, a condition that is verified from a canonical manufactured turbulent scalar solution. A mesh-quality criterion is derived from these observations and the minimum Reynolds number that a Direct Numerical Simulation (DNS) should feature for SGS scalar variance to be accurately studied from a priori filtering is obtained as a corollary.

Keywords

Large-Eddy Simulation Sub-Grid Scale scalar energy Scalar variance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction. Springer-Verlag, Berlin Heidelberg, 2nd edition, 2001. MATHGoogle Scholar
  2. 2.
    Moin, P. Int. J. Heat Fluid Flow, 23(6):710–720, 2002. CrossRefGoogle Scholar
  3. 3.
    Lesieur, M., Métais, O., Comte, P. Large-Eddy Simulations of Turbulence. Cambridge University Press, Cambridge UK, 2005. MATHCrossRefGoogle Scholar
  4. 4.
    Landenfeld, T., Sadiki, A., Janicka, J. Flow, Turbulence and Combustion, 68(2):111–135, 2002. MATHCrossRefGoogle Scholar
  5. 5.
    Domingo, P., Vervisch, L., Veynante, D. Combust. Flame, 152(3):415–432, 2008. CrossRefGoogle Scholar
  6. 6.
    Vreman, A. W., Albrecht, B. A., van Oijen, J. A., Bastiaans, R. J. M. Combust. Flame, 153(3):394–416, 2008. CrossRefGoogle Scholar
  7. 7.
    Veynante, D., Knikker, R. Journal of Turbulence, 7 (DOI:  10.1088/1468-5248/5/1/037), 2006.
  8. 8.
    Geurts, B. J., Fröhlich, J. Physics of Fluids, 14(6):L41–L44, 2002. CrossRefADSGoogle Scholar
  9. 9.
    Pope, S. B. N. J. Physics, 6, 2004. Google Scholar
  10. 10.
    Celik, I. B., Cehreli, Z. N., Yavuz, I. ASME Journal of Fluid Engineering, 127:949–958, 2005. CrossRefGoogle Scholar
  11. 11.
    Roache, P. J. J. Fluids Eng, 124(1):4–10, September 2002. CrossRefGoogle Scholar
  12. 12.
    Domino, S. In Moin, P., Mansour, N. N., editors, Studying Turbulence Using Numerical Simulation Databases, volume XI, pages 163–177. Center for Turbulence Research, Stanford, 2006. Google Scholar
  13. 13.
    Peters, N. Turbulent Combustion. Cambridge University Press, 2000. MATHCrossRefGoogle Scholar
  14. 14.
    Vervisch, L., Domingo, P., Lodato, G., Veynante, D. Submitted. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luc Vervisch
    • 1
  • Pascale Domingo
    • 1
  • Guido Lodato
    • 1
  • Denis Veynante
    • 2
  1. 1.CORIA - CNRS and INSA de RouenSaint-Etienne-du-RouvrayFrance
  2. 2.EM2C - CNRS and Ecole Centrale ParisChâtenay-MalabryFrance

Personalised recommendations