Advertisement

Analysis of SGS effects on dispersed particles in LES of heated channel flow

  • Jacek Pozorski
  • Mirosław Łuniewski
Part of the ERCOFTAC Series book series (ERCO, volume 16)

Abstract

Large-eddy simulation of a turbulent, non-isothermal channel flow is performed. The Lagrangian approach is followed to compute the dispersed phase (heavy particles) under the assumption of one-way momentum and energy coupling with the carrier phase. A stochastic model for the residual fluid velocity along the particle trajectories is applied to account for subfilter flow effects on particles. It is shown that both the particle dynamics and temperature are affected by the model. Results for the carrier and dispersed phases are presented in terms of their velocity and thermal statistics. The need for further model improvement is discussed.

Keywords

Two-phase dispersed flow Heat transfer Large-eddy simulation Lagrangian-Eulerian approach Subgrid-scale effects on particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fede P, Simonin O (2006) Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles. Phys Fluids 18:045103 CrossRefADSGoogle Scholar
  2. 2.
    Gao Z, Mashayek F (2004) Stochastic model for non-isothermal droplet-laden turbulent flows. AIAA J 42:255–260 CrossRefADSGoogle Scholar
  3. 3.
    Jaszczur M, Portela L (2008) Numerical data for reliability of LES for non-isothermal multiphase turbulent channel flow. In: Meyers J, Geurts B, Sagaut P (eds) Quality and Reliability of Large-Eddy Simulations (Springer) 342–354 Google Scholar
  4. 4.
    Kawamura H, Abe H, Matsuo Y (1999) DNS of turbulent heat transfer in channel flow with respect to Re and Pr effects. Int J Heat Fluid Flow 20:196–207 CrossRefGoogle Scholar
  5. 5.
    Kuerten JGM (2006) Subgrid modeling in particle-laden channel flows. Phys Fluids 18:025108 CrossRefADSGoogle Scholar
  6. 6.
    Marchioli C, Salvetti MV, Soldati A (2008) Some issues concerning LES of inertial particle dispersion in turbulent bounded flows. Phys Fluids 20:040603 CrossRefADSGoogle Scholar
  7. 7.
    Marchioli C, Soldati A, Kuerten JGM, Arcen B, Tanière A, Goldensoph G, Squires KD, Cargnelutti MF, Portela L (2008) Statistics of particle dispersion in DNS of wall-bounded turbulence. Int J Multiphase Flow 34:879–893 CrossRefGoogle Scholar
  8. 8.
    Moin P, Apte SV (2006) LES of multiphase reacting flows in complex combustors. AIAA J 44:698–708 CrossRefADSGoogle Scholar
  9. 9.
    Na Y, Papavassiliou DV, Hanratty TJ (1999) Use of DNS to study the effect of Prandtl number on temperature fields. Int J Heat Fluid Flow 20:187–195 CrossRefGoogle Scholar
  10. 10.
    Okong’o N, Bellan J (2004) Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. J Fluid Mech 499:1–47 MATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Papavassiliou DV, Hanratty TJ (1997) Transport of a passive scalar in a turbulent channel flow. Int J Heat Mass Transfer 40:1303–1311 MATHCrossRefGoogle Scholar
  12. 12.
    Pope SB (2000) Turbulent Flows. Cambridge University Press, Cambridge MATHGoogle Scholar
  13. 13.
    Pozorski J, Apte SV (2009) Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int J Multiphase Flow 35:118-28 CrossRefGoogle Scholar
  14. 14.
    Pozorski J, Łuniewski M (2008) Analysis of SGS particle dispersion model in LES of channel flow. In: Meyers J, Geurts B, Sagaut P (eds) Quality and Reliability of Large-Eddy Simulations (Springer) 331–342 CrossRefGoogle Scholar
  15. 15.
    Pozorski J, Wacławczyk M, Minier JP (2004) Scalar and velocity-scalar PDF modelling of near-wall turbulent heat transfer. Int J Heat Fluid Flow 25:884–895 CrossRefGoogle Scholar
  16. 16.
    Pozorski J, Wacławczyk T, Łuniewski M (2007) LES of turbulent channel flow and heavy particle dispersion. J Theor Appl Mech (Warsaw) 45:643–657 Google Scholar
  17. 17.
    Segura JC, Eaton JK, Oefelein JC (2004) Predictive capabilities of particle-laden LES. Rep. No. TSD–156, Dept. of Mech. Engng., Stanford University Google Scholar
  18. 18.
    Shotorban B, Mashayek F (2005) Modeling subgrid-scale effects on particles by approximate deconvolution. Phys Fluids 17:081701 CrossRefADSGoogle Scholar
  19. 19.
    Shotorban B, Mashayek F (2006) A stochastic model of particle motion in large-eddy simulation. J Turbulence 7:18 CrossRefADSGoogle Scholar
  20. 20.
    Wacławczyk M, Pozorski J, Minier JP (2008) New molecular transport model for FDF/LES of turbulence with passive scalar. Flow Turbul Combust 81:235–260 MATHCrossRefGoogle Scholar
  21. 21.
    Wang Q, Squires KD (1996) Large eddy simulation of particle deposition in a vertical turbulent channel flow. Int J Multiphase Flow, 22:667–683 MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Fluid-Flow MachineryPolish Academy of SciencesGdańskPoland

Personalised recommendations