Large-eddy simulation of pyroclastic density currents

  • Tomaso Esposti Ongaro
  • Sara Barsotti
  • Augusto Neri
  • Maria Vittoria Salvetti
Part of the ERCOFTAC Series book series (ERCO, volume 16)


We investigate the dynamics of turbulent pyroclastic density currents (PDCs) by adopting a 3D, Eulerian-Eulerian multiphase flow model, in which solid particles are treated as a continuum and the grain-size distribution is simplified by assuming two particulate phases. The turbulent sub-grid stress of the gas phase is modelled within the framework of Large-Eddy Simulation (LES) by means of a eddy-viscosity model together with a wall closure. Despite the significant numerical diffusion associated to the upwind method adopted for the Finite-Volume discretization, numerical simulations demonstrate the need of adopting a Sub-Grid Scale (SGS) model, while revealing the complex interplay between the grid and the SGS filter sizes. We also analyse the relationship between the averaged flow dynamic pressure and the action exerted by the PDC on a cubic obstacle, to evaluate the impact of a PDC on a building. Numerical results suggest that the average flow dynamic pressure can be used as a proxy for the force per unit surface acting on the building envelope (Fig. 5), even for such steeply stratified flows. However, it is not possible to express such proportionality as a constant coefficient such as the drag coefficient in a steady-state current. The present results indeed indicate that the large epistemic and aleatory uncertainty on initial and boundary conditions has an impact on the numerical predictions which is comparable to that of grid resolution.


Large-Eddy Simulation pyroclastic density currents numerical simulation multiphase flows 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Dartevelle, “Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows " Geochem., Geophys., Geosys. 5, 8 (2004). Google Scholar
  2. 2.
    T. H. Druitt, “Pyroclastic density currents", in The Physics of Explosive Volcanic Eruptions (Eds J. Gilbert and R.S.J. Sparks), Geol. Soc. London. Spec. Publ., 145 (1998). Google Scholar
  3. 3.
    F. Harlow and A. A. Amsden, “Numerical calculation of multiphase fluid flow”, J. Comput. Phys. 17 (1975). Google Scholar
  4. 4.
    T. Esposti Ongaro, C. Cavazzoni, G. Erbacci, A. Neri and M. V. Salvetti, “A parallel multiphase flow code for the 3D simulation of volcanic explosive eruptions”, Parallel Computing 33 (2007). Google Scholar
  5. 5.
    T. Esposti Ongaro, A. Neri, G. Menconi, M. de’ Michieli Vitturi, P. Marianelli, C. Cavazzoni, G. Erbacci and P. J. Baxter, “A transient 3D numerical simulation of column collapse and pyroclastic flow scenarios at Vesuvius”, J. Volcanol. Geotherm. Res. 178 (2008). Google Scholar
  6. 6.
    S.A. Hosseini, A. Shamsai, B. Ataie-Ashtiani, “Synchronous measurements of the velocity and concentration in low density turbidity currents using an Acoustic Doppler Velocimeter”, Flow Measurement and Instrumentation, 17 (2006). Google Scholar
  7. 7.
    P. J. Mason, “Large-eddy simulation: A critical review of the technique”, Q. J. R. Meteorol. Soc. 120 (1994). Google Scholar
  8. 8.
    F. Necker, C. Hartel, L. Kleiser, E. Meiburg, “High-resolution simulations of particle-driven gravity currents”, Int. J. Multiph. Flow 28 (2002), Google Scholar
  9. 9.
    A. Neri, T. Esposti Ongaro, G. Macedonio and D. Gidaspow, “Multiparticle simulation of collapsing volcanic columns and pyroclastic flows”, J. Geophys. Res. 108, B4 (2003). Google Scholar
  10. 10.
    J. M. Oberhuber, M. Herzog, H. F. Graf and K. Schwanke, “Volcanic plume simulation on large scales”, J. Volcanol. Geotherm. Res. 87 (1998). Google Scholar
  11. 11.
    N. Oreskes, K. Shrader-Frechette, K. Belitz, Verification, validation, and confirmation of numerical models in the Earth Sciences Science 263 (1994). Google Scholar
  12. 12.
    M. V. Salvetti and F. Beux, “The effect of the numerical scheme on the subgrid scale term in large-eddy simulation”, Phys. Fluid (1998). Google Scholar
  13. 13.
    J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic experiment”, Mon. Weather Rev., 91 (1963). Google Scholar
  14. 14.
    R. S. J. Sparks and W. P. Aspinall, “Volcanic activity: frontiers and challenges in forecasting, prediction and risk assessment”, In: The state of the planet: Frontiers and challanges in geophysics, Geophysical Monograph 150 IUGG, Volume 19 (2004). Google Scholar
  15. 15.
    Y. J. Suzuki, T. Koyaguchi, M. Ogawa and I. Hachisu “A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model”, J. Geophys. Res 110 (2005). Google Scholar
  16. 16.
    G. A Valentine, “Stratified flow in pyroclastic surges" Bull. Volcanol. 49 (1987). Google Scholar
  17. 17.
    G. A. Valentine, “Damage to structures by pyroclastic flows and surges, inferred from nuclear weapons effects", J. Volcanol. Geotherm. Res. 87 (1998). Google Scholar
  18. 18.
    G. Woo, The Mathematics of Natural Catastrophes, Imperial College Press, London (1999). CrossRefGoogle Scholar
  19. 19.
    G. Zuccaro, F. Cacace, P. J. Baxter, R. Spence, Impact of explosive scenarios at Vesuvius, J. Volcanol. Geotherm. Res. 178 (2008). Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tomaso Esposti Ongaro
    • 1
  • Sara Barsotti
    • 1
  • Augusto Neri
    • 1
  • Maria Vittoria Salvetti
    • 1
    • 2
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PisaPisaItaly
  2. 2.Dipartimento di Ingegneria AerospazialeUniversità di PisaPisaItaly

Personalised recommendations